Spodoptera frugiperda
fall armyworm
Spodoptera frugiperda is a species in the order Lepidoptera and is the larval life stage of a fall armyworm moth. The term armyworm can refer to several species, often describing the large-scale invasive behavior of the species larval stage. It is regarded as a pest and can damage and destroy a wide variety of crops, which causes large economic damage. Its scientific name derives from frugiperda, which is Latin for lost fruit, named because of the species ability to destroy crops. Because of its propensity for destruction, the fall armyworms habits and possibilities for crop protection have been studied in depth. It is also a notable case for studying sympatric speciation, as it appears to be diverging into two species currently. Another remarkable trait of the larva is that they practice cannibalism as a disease control mechanism.
Host Genome
Chromosome| Genome ID | Level | BUSCO Assessment |
|---|---|---|
| GCA_011064685.1 | Chromosome |
C:92.8%[S:90.4%,D:2.4%],F:1.2%,M:6.0%,n:1367
|
Download Genome Files
Related Symbionts
73 recordsSymbiont records associated with Spodoptera frugiperda
| Classification | Function | Function Tags | Reference | |
|---|---|---|---|---|
|
Bifidobacterium asteroides strain wkB2None4
Actinomycetota |
Bacteria
|
Bifidobacterium asteroides strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting it degrades amygdalin and is not sus… |
detoxification enzymes
|
|
|
Lactobacillus
Bacillota |
Bacteria
|
Lactobacillus has functions including nutrient absorption, energy metabolism, degradation of the plant's secondary metabolites, and insect immunity r… |
growth regulation
plant secondary metabolites
|
|
|
Enterococcus
Bacillota |
Bacteria
|
Enterococcus has functions including nutrient absorption, energy metabolism, degradation of the plant's secondary metabolites, and insect immunity re… |
growth regulation
plant secondary metabolites
|
|
|
Enterobacteriaceae
Pseudomonadota |
Bacteria
|
Enterobacteriaceae modulates plant defense by downregulating polyphenol oxidase (POX) and trypsin proteinase inhibitor (trypsin PI) activity but upre… |
plant defense modulation
|
|
|
Pantoea ananatis
Pseudomonadota |
Bacteria
|
Pantoea ananatis modulates plant defense by downregulating polyphenol oxidase (POX) and trypsin proteinase inhibitor (trypsin PI) activity but upregu… |
plant defense modulation
|
|
|
Pantoea dispersa
Pseudomonadota |
Bacteria
|
Pantoea dispersa acts as a probiotic for the fall armyworm (Spodoptera frugiperda), helping to detoxify benzoxazinoids (maize secondary metabolites) … |
detoxification enzymes
|
|
|
Enterococcus sp. FAW13-5
Bacillota |
Bacteria
|
Enterococcus sp. FAW13-5 mediates assaults by maize defenses on the fall armyworm's digestive and immune systems, resulting in reduced growth and ele… |
plant defense modulation
|
|
|
Enterobacter sp. FAW4-1
Pseudomonadota |
Bacteria
|
Enterobacter sp. FAW4-1 mediates assaults by maize defenses on the fall armyworm's digestive and immune systems, resulting in reduced growth and elev… |
plant defense modulation
|
|
|
Klebsiella sp. FAW8-1
Pseudomonadota |
Bacteria
|
Klebsiella sp. FAW8-1 mediates assaults by maize defenses on the fall armyworm's digestive and immune systems, resulting in reduced growth and elevat… |
plant defense modulation
|
|
|
Enterococcus FAW 2-1
Bacillota |
Bacteria
|
Enterococcus FAW 2-1 can enhance the growth of Spodoptera frugiperda, but this effect is contingent on dietary conditions, isolate availability, and … |
growth regulation
|
|
|
Wolbachia
Pseudomonadota |
Bacteria
|
Wolbachia infection in Spodoptera frugiperda induces cytoplasmic incompatibility (CI), thereby manipulating host reproduction to facilitate its verti… |
cytoplasmic incompatibility
|
|
|
Saccharomyces
Ascomycota |
Fungi
|
Saccharomyces are important fungi for insects in terms of nutrient supply and may be involved in insect development in the larval midgut of Spodopter… |
growth regulation
nutrient provision
|
|
|
Apiotrichum
Basidiomycota |
Fungi
|
Apiotrichum could be involved in lipid biosynthesis, and the degradation and detoxification of toxic substances in the larval midgut of Spodoptera fr… |
detoxification enzymes
|
|
|
Enterococcus spodopteracolus IIL-Luf18
Bacillota |
Bacteria
|
Enterococcus spodopteracolus IIL-Luf18 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugip… |
pesticide metabolization
|
|
|
Enterococcus spodopteracolus IIL-SusEm
Bacillota |
Bacteria
|
Enterococcus spodopteracolus IIL-SusEm (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugip… |
pesticide metabolization
|
|
|
Enterococcus entomosocium IIL-ClNone5
Bacillota |
Bacteria
|
Enterococcus entomosocium IIL-ClNone5 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe… |
pesticide metabolization
|
|
|
Enterococcus entomosocium IIL-DmNone1
Bacillota |
Bacteria
|
Enterococcus entomosocium IIL-DmNone1 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe… |
pesticide metabolization
|
|
|
Enterococcus entomosocium IIL-SpNone6
Bacillota |
Bacteria
|
Enterococcus entomosocium IIL-SpNone6 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe… |
pesticide metabolization
|
|
|
Enterococcus spodopteracolus IIL-Cl25
Bacillota |
Bacteria
|
Enterococcus spodopteracolus IIL-Cl25 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe… |
pesticide metabolization
|
|
|
Enterococcus spodopteracolus IIL-Sp24
Bacillota |
Bacteria
|
Enterococcus spodopteracolus IIL-Sp24 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe… |
pesticide metabolization
|
|
|
Enterococcus entomosocium IIL-SusEc
Bacillota |
Bacteria
|
Enterococcus entomosocium IIL-SusEc (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugiperd… |
pesticide metabolization
|
|
|
Enterococcus entomosocium IIL-Lc32
Bacillota |
Bacteria
|
Enterococcus entomosocium IIL-Lc32 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugiperda. |
pesticide metabolization
|
|
|
Klebsiella sp. EMBL-1
Pseudomonadota |
Bacteria
|
Klebsiella sp. EMBL-1 is able to depolymerize and utilize Polyvinyl chloride (PVC) as a sole energy source in the gut of Spodoptera frugiperda larvae. |
plastic degration
|
|
|
Arthrobacter nicotinovorans
Actinomycetota |
Bacteria
|
Arthrobacter nicotinovorans is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn. |
pesticide metabolization
|
|
|
Pseudomonas psychrotolerans
Pseudomonadota |
Bacteria
|
Pseudomonas psychrotolerans is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn. |
pesticide metabolization
|
|
|
Microbacterium arborescens
Actinomycetota |
Bacteria
|
Microbacterium arborescens is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn. |
pesticide metabolization
|
|
|
Leclercia adecarboxylata
Pseudomonadota |
Bacteria
|
Leclercia adecarboxylata is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn. |
pesticide metabolization
|
|
|
Penicillium
Ascomycota |
Fungi
|
Penicillium is well known for its ability to degrade cellulose, hemicellulose, and lignin in the larval midgut of Spodoptera frugiperda. |
cellulose hydrolysis
|
|
|
Paenibacillus
Bacillota |
Bacteria
|
Paenibacillus strains can be pathogens of arthropods, as noted in a study examining gut bacterial communities of Spodoptera frugiperda. |
other
|
|
|
Pseudomonas stutzeri
Pseudomonadota |
Bacteria
|
Pseudomonas stutzeri is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn. |
pesticide metabolization
|
|
|
Klebsiella
Pseudomonadota |
Bacteria
|
Klebsiella downregulates polyphenol oxidase (POX) but upregulates trypsin proteinase inhibitor (trypsin PI) in this plant species. |
immune priming
|
|
|
Raoultella
Pseudomonadota |
Bacteria
|
Raoultella downregulates polyphenol oxidase (POX) but upregulates trypsin proteinase inhibitor (trypsin PI) in this plant species. |
immune priming
|
|
|
Pseudomonas japonica
Pseudomonadota |
Bacteria
|
Pseudomonas japonica facilitates the degradation of flubendiamide and chlorantraniliprole in Spodoptera frugiperda. |
pesticide metabolization
|
|
|
Serratia marcescens
Pseudomonadota |
Bacteria
|
Serratia marcescens facilitates the degradation of flubendiamide and chlorantraniliprole in Spodoptera frugiperda. |
pesticide metabolization
|
|
|
Acinetobacter soli
Pseudomonadota |
Bacteria
|
Acinetobacter soli facilitates the degradation of flubendiamide and chlorantraniliprole in Spodoptera frugiperda. |
pesticide metabolization
|
|
|
Bombilactobacillus bombi BI-1.1
Bacillota |
Bacteria
|
Bombilactobacillus bombi BI-1.1 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Bombilactobacillus bombi BI-2.5
Bacillota |
Bacteria
|
Bombilactobacillus bombi BI-2.5 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Bombilactobacillus bombi LV-8.1
Bacillota |
Bacteria
|
Bombilactobacillus bombi LV-8.1 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Sphingomonas sp.
Pseudomonadota |
Bacteria
|
Sphingomonas sp. provides a protective effect to Spodoptera frugiperda against chlorantraniliprole stress. |
pesticide metabolization
|
|
|
Lactobacillus bombicola BI-4G
Bacillota |
Bacteria
|
Lactobacillus bombicola BI-4G can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Lactobacillus bombicola L5-31
Bacillota |
Bacteria
|
Lactobacillus bombicola L5-31 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Lactobacillus bombicola OCC3
Bacillota |
Bacteria
|
Lactobacillus bombicola OCC3 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Epichloë schardlii
Ascomycota |
Fungi
|
Epichloë schardlii protects its host by deterring feeding and having negative effects on development. |
developmental modulation
|
|
|
Xenorhabdus rhabduscin
Pseudomonadota |
Bacteria
|
Xenorhabdus rhabduscin gene cluster products inhibit Spodoptera frugiperda phenoloxidase activity. |
immune priming
|
|
|
Staphylococcus sciurisubsp.sciuri
Bacillota |
Bacteria
|
Staphylococcus sciuri subsp. sciuri may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Bacteria
|
Gut bacteria (microbiome) includes the suppression and detoxification of plant defenses. |
detoxification enzymes
|
||
|
Gilliamella
Pseudomonadota |
Bacteria
|
Gilliamella can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda. |
detoxification enzymes
|
|
|
Pseudomonas psychrotolerans
Pseudomonadota |
Bacteria
|
Pseudomonas psychrotolerans may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Enterococcus casseliflavus
Bacillota |
Bacteria
|
Enterococcus casseliflavus may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Microbacterium arborescens
Actinomycetota |
Bacteria
|
Microbacterium arborescens may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Microbacterium paraoxydan
Actinomycetota |
Bacteria
|
Microbacterium paraoxydan may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Leclercia adecarboxylata
Pseudomonadota |
Bacteria
|
Leclercia adecarboxylata may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Enterococcus mundtii
Bacillota |
Bacteria
|
Enterococcus mundtii may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Pseudomonas stutzeri
Pseudomonadota |
Bacteria
|
Pseudomonas stutzeri may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Bacteria
|
Gut bacteria affect energy and metabolic homeostasis in Spodoptera frugiperda. |
carbohydrate metabolism
|
||
|
Delftia lacustris
Pseudomonadota |
Bacteria
|
Delftia lacustris may influence the metabolization of pesticides in insects. |
pesticide metabolization
|
|
|
Enterococcus spp.
Bacillota |
Bacteria
|
Enterococcus spp. may play a protective role against insect pathogens. |
pathogen resistance
|
|
|
Epichloë alsodes
Ascomycota |
Fungi
|
Epichloë alsodes protects its host by causing larval mortality. |
stress resistance
|
|
|
Klebsiella spp.
Pseudomonadota |
Bacteria
|
Klebsiella spp. may have positive effects on insect fecundity. |
fertility
|
|
|
Bacteria
|
- |
|||
|
Enterobacter
Pseudomonadota |
Bacteria
|
- |
||
|
Enterococcus
Bacillota |
Bacteria
|
- |
||
|
Enterococcus
Bacillota |
Bacteria
|
- |
||
|
Bacteria
|
- |
|||
|
Bacteria
|
- |
|||
|
Bacteria
|
- |
|||
|
Bacteria
|
- |
|||
|
Kaistia
Pseudomonadota |
Bacteria
|
- |
||
|
Bacteria
|
- |
|||
|
Providencia
Pseudomonadota |
Bacteria
|
- |
||
|
Pseudomonas
Pseudomonadota |
Bacteria
|
- |
||
|
Ralstonia
Pseudomonadota |
Bacteria
|
- |
||
|
Sediminibacterium
Bacteroidota |
Bacteria
|
- |
Metagenome Information
0 recordsMetagenome sequencing data associated with Spodoptera frugiperda
| Run | Platform | Location | Date | BioProject |
|---|---|---|---|---|
No metagenomes foundNo metagenome records associated with this host species. |
||||
Amplicon Information
135 recordsAmplicon sequencing data associated with Spodoptera frugiperda
| Run | Classification | Platform | Location | Environment |
|---|---|---|---|---|
|
SRR21079106
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079105
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079104
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079103
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079102
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079101
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079100
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079099
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079098
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079115
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079114
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079113
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079112
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079111
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079110
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079109
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079108
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR21079107
AMPLICON |
16S
|
-
|
China
missing |
-
|
|
SRR8268649
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268653
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268654
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268655
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268656
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268657
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268660
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268661
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268662
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268663
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268664
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268665
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268666
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268667
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268668
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268669
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268671
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268672
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268691
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268690
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268688
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268687
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268686
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268685
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268684
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268683
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268681
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268682
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268680
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268679
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268678
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268677
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268676
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268675
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268674
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268673
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268640
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268641
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268642
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268643
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268644
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268645
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268646
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268647
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR8268648
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
|
SRR19521766
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521735
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521736
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521737
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521738
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521739
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521740
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521741
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521742
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521743
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521744
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521745
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521746
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521747
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521748
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521749
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521750
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521751
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521752
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521753
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521754
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521755
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521756
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521757
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521758
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521759
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521760
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521761
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521762
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521763
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521764
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521765
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521734
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521767
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521768
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR19521769
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
|
SRR10738553
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738552
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738551
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738550
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738549
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738548
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738547
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738546
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738545
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738544
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738543
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738542
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738541
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738540
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738539
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738538
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738537
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738536
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738535
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738534
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738533
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738532
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738531
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738530
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738529
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738528
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738527
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738526
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738525
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738524
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738523
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738522
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738521
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738520
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738519
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
|
SRR10738518
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
Related Articles
24 recordsResearch articles related to Spodoptera frugiperda
| Title | Authors | Journal | Year | DOI |
|---|---|---|---|---|
|
Fu, Y; Zhang, LY; Zhao, QY ... Xu, J; Yang, S
|
JOURNAL OF PEST SCIENCE
|
2024
|
10.1007/s10340-024-01759-0 | |
|
Gu, M; Lv, SL; Hu, MF ... Liang, P; Zhang, L
|
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
|
2024
|
10.1016/j.pestbp.2024.105891 | |
|
Qi, Jinfeng; Xiao, Fangjie; Liu, Xingxing ... Xu, Yuxing; Wang, Hang
|
Microbiome
|
2024
|
10.1186/s40168-024-01957-z | |
|
Liu, Y; Zhang, LN; Cai, XY ... Qiu, BL; Hou, YM
|
Insects
|
2024
|
10.3390/insects15040217 | |
|
Han, SP; Zhou, YY; Wang, D ... Song, P; He, YZ
|
Insects
|
2023
|
10.3390/insects14030264 | |
|
Gomes, AFF; de Almeida, LG; Consoli, FL
|
MICROBIAL ECOLOGY
|
2023
|
10.1007/s00248-023-02264-0 | |
|
Fu, JR; Wang, JH; Huang, XM ... Feng, QL; Deng, HM
|
FRONTIERS IN MICROBIOLOGY
|
2023
|
10.3389/fmicb.2023.1237684 | |
|
Zhang, Zhe; Peng, Haoran; Yang, Dongchen ... Zhang, Jinlin; Ju, Feng
|
Nature Communications
|
2022
|
10.1038/s41467-022-32903-y | |
|
Li, YN; Liu, LY; Cai, XM ... Lin, JT; Shu, BS
|
SCIENTIFIC REPORTS
|
2022
|
10.1038/s41598-022-17278-w | |
|
Chen, BS; Mason, CJ; Peiffer, M ... Shao, YQ; Felton, GW
|
JOURNAL OF INSECT PHYSIOLOGY
|
2022
|
10.1016/j.jinsphys.2022.104369 | |
|
Motta, EVS; Gage, A; Smith, TE ... Moran, N; Koch, H
|
ELIFE
|
2022
|
10.7554/eLife.82595 | |
|
Zhao, QY; Zhang, LY; Fu, DY ... Chen, P; Ye, H
|
BMC MICROBIOLOGY
|
2022
|
10.1186/s12866-022-02724-6 | |
|
Zhang, LY; Yu, H; Fu, DY ... Yang, S; Ye, H
|
FRONTIERS IN MICROBIOLOGY
|
2022
|
10.3389/fmicb.2022.878856 | |
|
Ugwu, JA; Wenzi, R; Asiegbu, FO
|
JOURNAL OF APPLIED ENTOMOLOGY
|
2022
|
10.1111/jen.13022 | |
|
Chen, Yaqing; Zhou, Huanchan; Lai, Yushan ... Yu, Xiao-Qiang; Wang, Xiaoyun
|
Frontiers in Microbiology
|
2021
|
10.3389/fmicb.2021.727434 | |
|
Mason, CJ; Hoover, K; Felton, GW
|
SCIENTIFIC REPORTS
|
2021
|
10.1038/s41598-021-83497-2 | |
|
Gomes, AFF; Omoto, C; Cônsoli, FL
|
JOURNAL OF PEST SCIENCE
|
2020
|
10.1007/s10340-020-01202-0 | |
|
Ugwu, JA; Liu, MX; Sun, H; Asiegbu, FO
|
Journal of Applied Entomology
|
2020
|
10.1111/jen.12821 | |
|
Nuñez-Valdez, ME; Lanois, A; Pagès, S; Duvic, B; Gaudriault, S
|
PLOS ONE
|
2019
|
10.1371/journal.pone.0212809 | |
|
Jones, AG; Mason, CJ; Felton, GW; Hoover, K
|
SCIENTIFIC REPORTS
|
2019
|
10.1038/s41598-019-39163-9 | |
|
Mason, CJ; Ray, S; Shikano, I ... Hoover, K; Felton, GW
|
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
|
2019
|
10.1073/pnas.1908748116 | |
|
Shymanovich, T; Musso, AM; Cech, NB; Faeth, SH
|
Arthropod-Plant Interactions
|
2018
|
10.1007/s11829-018-9635-8 | |
|
Acevedo, Flor E.; Peiffer, Michelle; Tan, Ching-Wen ... Luthe, Dawn; Felton, Gary
|
Molecular plant-microbe interactions: MPMI
|
2017
|
10.1094/MPMI-11-16-0240-R | |
|
de Almeida, LG; de Moraes, LAB; Trigo, JR; Omoto, C; Cônsoli, FL
|
PLOS ONE
|
2017
|
10.1371/journal.pone.0174754 |
Core Microbiome Composition
Core microbiome composition is derived from available metagenomic and amplicon sequencing data, calculated based on the relative abundance and coverage of symbionts across different samples. The representativeness of this analysis may vary depending on the number of available samples and should be considered as a reference guide. See calculation details in Help documentation