Spodoptera frugiperda is a species in the order Lepidoptera and is the larval life stage of a fall armyworm moth. The term armyworm can refer to several species, often describing the large-scale invasive behavior of the species larval stage. It is regarded as a pest and can damage and destroy a wide variety of crops, which causes large economic damage. Its scientific name derives from frugiperda, which is Latin for lost fruit, named because of the species ability to destroy crops. Because of its propensity for destruction, the fall armyworms habits and possibilities for crop protection have been studied in depth. It is also a notable case for studying sympatric speciation, as it appears to be diverging into two species currently. Another remarkable trait of the larva is that they practice cannibalism as a disease control mechanism.

Host Genome

Chromosome
Genome ID Level BUSCO Assessment
GCA_011064685.1 Chromosome
C:92.8%[S:90.4%,D:2.4%],F:1.2%,M:6.0%,n:1367

Related Symbionts

73 records

Symbiont records associated with Spodoptera frugiperda

Classification Function Function Tags Reference
Bacteria

Bifidobacterium asteroides strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting it degrades amygdalin and is not sus…

detoxification enzymes
Lactobacillus

Bacillota

Bacteria

Lactobacillus has functions including nutrient absorption, energy metabolism, degradation of the plant's secondary metabolites, and insect immunity r…

growth regulation plant secondary metabolites
Enterococcus

Bacillota

Bacteria

Enterococcus has functions including nutrient absorption, energy metabolism, degradation of the plant's secondary metabolites, and insect immunity re…

growth regulation plant secondary metabolites
Enterobacteriaceae

Pseudomonadota

Bacteria

Enterobacteriaceae modulates plant defense by downregulating polyphenol oxidase (POX) and trypsin proteinase inhibitor (trypsin PI) activity but upre…

plant defense modulation
Pantoea ananatis

Pseudomonadota

Bacteria

Pantoea ananatis modulates plant defense by downregulating polyphenol oxidase (POX) and trypsin proteinase inhibitor (trypsin PI) activity but upregu…

plant defense modulation
Pantoea dispersa

Pseudomonadota

Bacteria

Pantoea dispersa acts as a probiotic for the fall armyworm (Spodoptera frugiperda), helping to detoxify benzoxazinoids (maize secondary metabolites) …

detoxification enzymes
Bacteria

Enterococcus sp. FAW13-5 mediates assaults by maize defenses on the fall armyworm's digestive and immune systems, resulting in reduced growth and ele…

plant defense modulation
Bacteria

Enterobacter sp. FAW4-1 mediates assaults by maize defenses on the fall armyworm's digestive and immune systems, resulting in reduced growth and elev…

plant defense modulation
Bacteria

Klebsiella sp. FAW8-1 mediates assaults by maize defenses on the fall armyworm's digestive and immune systems, resulting in reduced growth and elevat…

plant defense modulation
Bacteria

Enterococcus FAW 2-1 can enhance the growth of Spodoptera frugiperda, but this effect is contingent on dietary conditions, isolate availability, and …

growth regulation
Wolbachia

Pseudomonadota

Bacteria

Wolbachia infection in Spodoptera frugiperda induces cytoplasmic incompatibility (CI), thereby manipulating host reproduction to facilitate its verti…

cytoplasmic incompatibility
Saccharomyces

Ascomycota

Fungi

Saccharomyces are important fungi for insects in terms of nutrient supply and may be involved in insect development in the larval midgut of Spodopter…

growth regulation nutrient provision
Apiotrichum

Basidiomycota

Fungi

Apiotrichum could be involved in lipid biosynthesis, and the degradation and detoxification of toxic substances in the larval midgut of Spodoptera fr…

detoxification enzymes
Bacteria

Enterococcus spodopteracolus IIL-Luf18 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugip…

pesticide metabolization
Bacteria

Enterococcus spodopteracolus IIL-SusEm (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugip…

pesticide metabolization
Bacteria

Enterococcus entomosocium IIL-ClNone5 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe…

pesticide metabolization
Bacteria

Enterococcus entomosocium IIL-DmNone1 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe…

pesticide metabolization
Bacteria

Enterococcus entomosocium IIL-SpNone6 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe…

pesticide metabolization
Bacteria

Enterococcus spodopteracolus IIL-Cl25 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe…

pesticide metabolization
Bacteria

Enterococcus spodopteracolus IIL-Sp24 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugipe…

pesticide metabolization
Bacteria

Enterococcus entomosocium IIL-SusEc (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugiperd…

pesticide metabolization
Bacteria

Enterococcus entomosocium IIL-Lc32 (a newly identified species) functions to metabolize different pesticides within the gut of Spodoptera\ frugiperda.

pesticide metabolization
Bacteria

Klebsiella sp. EMBL-1 is able to depolymerize and utilize Polyvinyl chloride (PVC) as a sole energy source in the gut of Spodoptera frugiperda larvae.

plastic degration
Bacteria

Arthrobacter nicotinovorans is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn.

pesticide metabolization
Bacteria

Pseudomonas psychrotolerans is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn.

pesticide metabolization
Bacteria

Microbacterium arborescens is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn.

pesticide metabolization
Bacteria

Leclercia adecarboxylata is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn.

pesticide metabolization
Penicillium

Ascomycota

Fungi

Penicillium is well known for its ability to degrade cellulose, hemicellulose, and lignin in the larval midgut of Spodoptera frugiperda.

cellulose hydrolysis
Paenibacillus

Bacillota

Bacteria

Paenibacillus strains can be pathogens of arthropods, as noted in a study examining gut bacterial communities of Spodoptera frugiperda.

other
Pseudomonas stutzeri

Pseudomonadota

Bacteria

Pseudomonas stutzeri is involved in the degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron, and spinosyn.

pesticide metabolization
Klebsiella

Pseudomonadota

Bacteria

Klebsiella downregulates polyphenol oxidase (POX) but upregulates trypsin proteinase inhibitor (trypsin PI) in this plant species.

immune priming
Raoultella

Pseudomonadota

Bacteria

Raoultella downregulates polyphenol oxidase (POX) but upregulates trypsin proteinase inhibitor (trypsin PI) in this plant species.

immune priming
Pseudomonas japonica

Pseudomonadota

Bacteria

Pseudomonas japonica facilitates the degradation of flubendiamide and chlorantraniliprole in Spodoptera frugiperda.

pesticide metabolization
Serratia marcescens

Pseudomonadota

Bacteria

Serratia marcescens facilitates the degradation of flubendiamide and chlorantraniliprole in Spodoptera frugiperda.

pesticide metabolization
Acinetobacter soli

Pseudomonadota

Bacteria

Acinetobacter soli facilitates the degradation of flubendiamide and chlorantraniliprole in Spodoptera frugiperda.

pesticide metabolization
Bacteria

Bombilactobacillus bombi BI-1.1 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Bacteria

Bombilactobacillus bombi BI-2.5 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Bacteria

Bombilactobacillus bombi LV-8.1 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Sphingomonas sp.

Pseudomonadota

Bacteria

Sphingomonas sp. provides a protective effect to Spodoptera frugiperda against chlorantraniliprole stress.

pesticide metabolization
Bacteria

Lactobacillus bombicola BI-4G can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Bacteria

Lactobacillus bombicola L5-31 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Bacteria

Lactobacillus bombicola OCC3 can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Fungi

Epichloë schardlii protects its host by deterring feeding and having negative effects on development.

developmental modulation
Bacteria

Xenorhabdus rhabduscin gene cluster products inhibit Spodoptera frugiperda phenoloxidase activity.

immune priming
Bacteria

Staphylococcus sciuri subsp. sciuri may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Gut bacteria (microbiome) includes the suppression and detoxification of plant defenses.

detoxification enzymes
Gilliamella

Pseudomonadota

Bacteria

Gilliamella can degrade the plant toxin amygdalin in the gut of Spodoptera frugiperda.

detoxification enzymes
Bacteria

Pseudomonas psychrotolerans may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Enterococcus casseliflavus may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Microbacterium arborescens may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Microbacterium paraoxydan may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Leclercia adecarboxylata may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Enterococcus mundtii may influence the metabolization of pesticides in insects.

pesticide metabolization
Pseudomonas stutzeri

Pseudomonadota

Bacteria

Pseudomonas stutzeri may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Gut bacteria affect energy and metabolic homeostasis in Spodoptera frugiperda.

carbohydrate metabolism
Delftia lacustris

Pseudomonadota

Bacteria

Delftia lacustris may influence the metabolization of pesticides in insects.

pesticide metabolization
Bacteria

Enterococcus spp. may play a protective role against insect pathogens.

pathogen resistance
Fungi

Epichloë alsodes protects its host by causing larval mortality.

stress resistance
Klebsiella spp.

Pseudomonadota

Bacteria

Klebsiella spp. may have positive effects on insect fecundity.

fertility
Bacteria

-

Enterobacter

Pseudomonadota

Bacteria

-

Enterococcus

Bacillota

Bacteria

-

Enterococcus

Bacillota

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Kaistia

Pseudomonadota

Bacteria

-

Bacteria

-

Providencia

Pseudomonadota

Bacteria

-

Pseudomonas

Pseudomonadota

Bacteria

-

Ralstonia

Pseudomonadota

Bacteria

-

Sediminibacterium

Bacteroidota

Bacteria

-

Back to Table

Metagenome Information

0 records

Metagenome sequencing data associated with Spodoptera frugiperda

Run Platform Location Date BioProject

No metagenomes found

No metagenome records associated with this host species.

Amplicon Information

135 records

Amplicon sequencing data associated with Spodoptera frugiperda

Run Classification Platform Location Environment
SRR21079106

AMPLICON

16S
-
China

missing

-
SRR21079105

AMPLICON

16S
-
China

missing

-
SRR21079104

AMPLICON

16S
-
China

missing

-
SRR21079103

AMPLICON

16S
-
China

missing

-
SRR21079102

AMPLICON

16S
-
China

missing

-
SRR21079101

AMPLICON

16S
-
China

missing

-
SRR21079100

AMPLICON

16S
-
China

missing

-
SRR21079099

AMPLICON

16S
-
China

missing

-
SRR21079098

AMPLICON

16S
-
China

missing

-
SRR21079115

AMPLICON

16S
-
China

missing

-
SRR21079114

AMPLICON

16S
-
China

missing

-
SRR21079113

AMPLICON

16S
-
China

missing

-
SRR21079112

AMPLICON

16S
-
China

missing

-
SRR21079111

AMPLICON

16S
-
China

missing

-
SRR21079110

AMPLICON

16S
-
China

missing

-
SRR21079109

AMPLICON

16S
-
China

missing

-
SRR21079108

AMPLICON

16S
-
China

missing

-
SRR21079107

AMPLICON

16S
-
China

missing

-
SRR8268649

AMPLICON

16S
-
USA

not collected

-
SRR8268653

AMPLICON

16S
-
USA

not collected

-
SRR8268654

AMPLICON

16S
-
USA

not collected

-
SRR8268655

AMPLICON

16S
-
USA

not collected

-
SRR8268656

AMPLICON

16S
-
USA

not collected

-
SRR8268657

AMPLICON

16S
-
USA

not collected

-
SRR8268660

AMPLICON

16S
-
USA

not collected

-
SRR8268661

AMPLICON

16S
-
USA

not collected

-
SRR8268662

AMPLICON

16S
-
USA

not collected

-
SRR8268663

AMPLICON

16S
-
USA

not collected

-
SRR8268664

AMPLICON

16S
-
USA

not collected

-
SRR8268665

AMPLICON

16S
-
USA

not collected

-
SRR8268666

AMPLICON

16S
-
USA

not collected

-
SRR8268667

AMPLICON

16S
-
USA

not collected

-
SRR8268668

AMPLICON

16S
-
USA

not collected

-
SRR8268669

AMPLICON

16S
-
USA

not collected

-
SRR8268671

AMPLICON

16S
-
USA

not collected

-
SRR8268672

AMPLICON

16S
-
USA

not collected

-
SRR8268691

AMPLICON

16S
-
USA

not collected

-
SRR8268690

AMPLICON

16S
-
USA

not collected

-
SRR8268688

AMPLICON

16S
-
USA

not collected

-
SRR8268687

AMPLICON

16S
-
USA

not collected

-
SRR8268686

AMPLICON

16S
-
USA

not collected

-
SRR8268685

AMPLICON

16S
-
USA

not collected

-
SRR8268684

AMPLICON

16S
-
USA

not collected

-
SRR8268683

AMPLICON

16S
-
USA

not collected

-
SRR8268681

AMPLICON

16S
-
USA

not collected

-
SRR8268682

AMPLICON

16S
-
USA

not collected

-
SRR8268680

AMPLICON

16S
-
USA

not collected

-
SRR8268679

AMPLICON

16S
-
USA

not collected

-
SRR8268678

AMPLICON

16S
-
USA

not collected

-
SRR8268677

AMPLICON

16S
-
USA

not collected

-
SRR8268676

AMPLICON

16S
-
USA

not collected

-
SRR8268675

AMPLICON

16S
-
USA

not collected

-
SRR8268674

AMPLICON

16S
-
USA

not collected

-
SRR8268673

AMPLICON

16S
-
USA

not collected

-
SRR8268640

AMPLICON

16S
-
USA

not collected

-
SRR8268641

AMPLICON

16S
-
USA

not collected

-
SRR8268642

AMPLICON

16S
-
USA

not collected

-
SRR8268643

AMPLICON

16S
-
USA

not collected

-
SRR8268644

AMPLICON

16S
-
USA

not collected

-
SRR8268645

AMPLICON

16S
-
USA

not collected

-
SRR8268646

AMPLICON

16S
-
USA

not collected

-
SRR8268647

AMPLICON

16S
-
USA

not collected

-
SRR8268648

AMPLICON

16S
-
USA

not collected

-
SRR19521766

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521735

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521736

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521737

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521738

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521739

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521740

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521741

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521742

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521743

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521744

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521745

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521746

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521747

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521748

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521749

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521750

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521751

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521752

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521753

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521754

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521755

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521756

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521757

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521758

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521759

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521760

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521761

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521762

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521763

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521764

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521765

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521734

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521767

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521768

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR19521769

AMPLICON

16S
-
China

25.06 N 102.75 E

-
SRR10738553

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738552

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738551

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738550

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738549

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738548

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738547

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738546

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738545

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738544

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738543

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738542

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738541

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738540

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738539

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738538

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738537

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738536

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738535

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738534

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738533

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738532

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738531

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738530

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738529

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738528

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738527

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738526

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738525

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738524

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738523

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738522

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738521

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738520

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738519

AMPLICON

16S
-
Brazil

not applicable

-
SRR10738518

AMPLICON

16S
-
Brazil

not applicable

-

Related Articles

24 records

Research articles related to Spodoptera frugiperda

Title Authors Journal Year DOI
Fu, Y; Zhang, LY; Zhao, QY ... Xu, J; Yang, S
JOURNAL OF PEST SCIENCE
2024
10.1007/s10340-024-01759-0
Gu, M; Lv, SL; Hu, MF ... Liang, P; Zhang, L
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
2024
10.1016/j.pestbp.2024.105891
Qi, Jinfeng; Xiao, Fangjie; Liu, Xingxing ... Xu, Yuxing; Wang, Hang
Microbiome
2024
10.1186/s40168-024-01957-z
Liu, Y; Zhang, LN; Cai, XY ... Qiu, BL; Hou, YM
Insects
2024
10.3390/insects15040217
Han, SP; Zhou, YY; Wang, D ... Song, P; He, YZ
Insects
2023
10.3390/insects14030264
Gomes, AFF; de Almeida, LG; Consoli, FL
MICROBIAL ECOLOGY
2023
10.1007/s00248-023-02264-0
Fu, JR; Wang, JH; Huang, XM ... Feng, QL; Deng, HM
FRONTIERS IN MICROBIOLOGY
2023
10.3389/fmicb.2023.1237684
Zhang, Zhe; Peng, Haoran; Yang, Dongchen ... Zhang, Jinlin; Ju, Feng
Nature Communications
2022
10.1038/s41467-022-32903-y
Li, YN; Liu, LY; Cai, XM ... Lin, JT; Shu, BS
SCIENTIFIC REPORTS
2022
10.1038/s41598-022-17278-w
Chen, BS; Mason, CJ; Peiffer, M ... Shao, YQ; Felton, GW
JOURNAL OF INSECT PHYSIOLOGY
2022
10.1016/j.jinsphys.2022.104369
Motta, EVS; Gage, A; Smith, TE ... Moran, N; Koch, H
ELIFE
2022
10.7554/eLife.82595
Zhao, QY; Zhang, LY; Fu, DY ... Chen, P; Ye, H
BMC MICROBIOLOGY
2022
10.1186/s12866-022-02724-6
Zhang, LY; Yu, H; Fu, DY ... Yang, S; Ye, H
FRONTIERS IN MICROBIOLOGY
2022
10.3389/fmicb.2022.878856
Ugwu, JA; Wenzi, R; Asiegbu, FO
JOURNAL OF APPLIED ENTOMOLOGY
2022
10.1111/jen.13022
Chen, Yaqing; Zhou, Huanchan; Lai, Yushan ... Yu, Xiao-Qiang; Wang, Xiaoyun
Frontiers in Microbiology
2021
10.3389/fmicb.2021.727434
Mason, CJ; Hoover, K; Felton, GW
SCIENTIFIC REPORTS
2021
10.1038/s41598-021-83497-2
Gomes, AFF; Omoto, C; Cônsoli, FL
JOURNAL OF PEST SCIENCE
2020
10.1007/s10340-020-01202-0
Ugwu, JA; Liu, MX; Sun, H; Asiegbu, FO
Journal of Applied Entomology
2020
10.1111/jen.12821
Nuñez-Valdez, ME; Lanois, A; Pagès, S; Duvic, B; Gaudriault, S
PLOS ONE
2019
10.1371/journal.pone.0212809
Jones, AG; Mason, CJ; Felton, GW; Hoover, K
SCIENTIFIC REPORTS
2019
10.1038/s41598-019-39163-9
Mason, CJ; Ray, S; Shikano, I ... Hoover, K; Felton, GW
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2019
10.1073/pnas.1908748116
Shymanovich, T; Musso, AM; Cech, NB; Faeth, SH
Arthropod-Plant Interactions
2018
10.1007/s11829-018-9635-8
Acevedo, Flor E.; Peiffer, Michelle; Tan, Ching-Wen ... Luthe, Dawn; Felton, Gary
Molecular plant-microbe interactions: MPMI
2017
10.1094/MPMI-11-16-0240-R
de Almeida, LG; de Moraes, LAB; Trigo, JR; Omoto, C; Cônsoli, FL
PLOS ONE
2017
10.1371/journal.pone.0174754

Core Microbiome Composition

Core microbiome composition is derived from available metagenomic and amplicon sequencing data, calculated based on the relative abundance and coverage of symbionts across different samples. The representativeness of this analysis may vary depending on the number of available samples and should be considered as a reference guide. See calculation details in Help documentation

Interactive Taxonomy Visualization