Spodoptera frugiperda
fall armyworm
Spodoptera frugiperda is a species in the order Lepidoptera and is the larval life stage of a fall armyworm moth. The term armyworm can refer to several species, often describing the large-scale invasive behavior of the species larval stage. It is regarded as a pest and can damage and destroy a wide variety of crops, which causes large economic damage. Its scientific name derives from frugiperda, which is Latin for lost fruit, named because of the species ability to destroy crops. Because of its propensity for destruction, the fall armyworms habits and possibilities for crop protection have been studied in depth. It is also a notable case for studying sympatric speciation, as it appears to be diverging into two species currently. Another remarkable trait of the larva is that they practice cannibalism as a disease control mechanism.
Host Genome
ChromosomeGenome ID | Level | BUSCO Assessment |
---|---|---|
GCA_011064685.1 | Chromosome |
C:92.8%[S:90.4%,D:2.4%],F:1.2%,M:6.0%,n:1367
|
Download Genome Files
Related Symbionts
73 recordsSymbiont records associated with Spodoptera frugiperda
Classification | Function | Function Tags | Reference | |
---|---|---|---|---|
Enterobacteriaceae
Pseudomonadota |
Bacteria
|
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) … |
Plant defense
|
|
Pantoea ananatis
Pseudomonadota |
Bacteria
|
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) … |
Plant defense
|
|
Bifidobacterium asteroides strain wkB2None4
Actinomycetota |
Bacteria
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to t… |
Plant secondary metabolites
|
|
Enterobacter sp. FAW4-1
Pseudomonadota |
Bacteria
|
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in t… |
Plant defense
|
|
Enterococcus sp. FAW13-5
Bacillota |
Bacteria
|
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in t… |
Plant defense
|
|
Klebsiella sp. FAW8-1
Pseudomonadota |
Bacteria
|
microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in t… |
Plant defense
|
|
Enterococcus
Bacillota |
Bacteria
|
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on |
Growth and Development
|
|
Lactobacillus
Bacillota |
Bacteria
|
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on |
Growth and Development
|
|
Enterococcus FAW 2-1
Bacillota |
Bacteria
|
can enhance the growth of fall armyworm, but these effects arecontingent on dietary conditions, isolate availability, and host larval instar |
Growth and Development
|
|
Saccharomyces
Ascomycota |
Fungi
|
Saccharomyces are important fungi for insects in terms of nutrient supply and may be involved in insect development |
Digestive enzymes
|
|
Apiotrichum
Basidiomycota |
Fungi
|
they could be involved in lipid biosynthesis, and the degradation and detoxification of toxic substances |
Digestive enzymes
|
|
Pantoea dispersa
Pseudomonadota |
Bacteria
|
detoxify benzoxazinoids (secondary metabolites produced by maize) and promote caterpillar growth |
Pathogen interaction
|
|
Xenorhabdus rhabduscin
Pseudomonadota |
Bacteria
|
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity |
Immune priming
|
|
Arthrobacter nicotinovorans
Actinomycetota |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
Pesticide metabolization
|
|
Leclercia adecarboxylata
Pseudomonadota |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
Pesticide metabolization
|
|
Microbacterium arborescens
Actinomycetota |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
Pesticide metabolization
|
|
Pseudomonas psychrotolerans
Pseudomonadota |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
Pesticide metabolization
|
|
Pseudomonas stutzeri
Pseudomonadota |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
Pesticide metabolization
|
|
Penicillium
Ascomycota |
Fungi
|
Penicillium is well known for its ability to degrade cellulose, hemicellulose, and lignin |
Pesticide metabolization
|
|
Klebsiella sp. EMBL-1
Pseudomonadota |
Bacteria
|
Klebsiella sp. EMBL-1 is able to depolymerize and utilize PVC as sole energy source |
Plastic degradation
|
|
Sphingomonas sp.
Pseudomonadota |
Bacteria
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda |
Pesticide metabolization
|
|
Epichloë schardlii
Ascomycota |
Fungi
|
protect their host by deterring feeding and negative effects on development |
||
Bacteria
|
gut bacteria include suppression and detoxification of plant defences |
Plant defense
Plant secondary metabolites
|
||
Klebsiella
Pseudomonadota |
Bacteria
|
downregulated POX but upregulated trypsin PI in this plant species |
Immune priming
|
|
Raoultella
Pseudomonadota |
Bacteria
|
downregulated POX but upregulated trypsin PI in this plant species |
Immune priming
|
|
Delftia lacustris
Pseudomonadota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Enterococcus casseliflavus
Bacillota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Enterococcus mundtii
Bacillota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Bacteria
|
affects energy and metabolic homeostasis in S. frugiperda |
Nutrient provision
|
||
Leclercia adecarboxylata
Pseudomonadota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Microbacterium arborescens
Actinomycetota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Microbacterium paraoxydan
Actinomycetota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Pseudomonas psychrotolerans
Pseudomonadota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Pseudomonas stutzeri
Pseudomonadota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Staphylococcus sciurisubsp.sciuri
Bacillota |
Bacteria
|
may influence the metabolization of pesticides in insects |
Pesticide metabolization
|
|
Acinetobacter soli
Pseudomonadota |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
Pesticide metabolization
|
|
Paenibacillus
Bacillota |
Bacteria
|
Paenibacillus strains can be pathogens of arthropods |
Digestive enzymes
Antimicrobials
|
|
Pseudomonas japonica
Pseudomonadota |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
Pesticide metabolization
|
|
Serratia marcescens
Pseudomonadota |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
Pesticide metabolization
|
|
Enterococcus spp.
Bacillota |
Bacteria
|
may play a protective role against insect pathogens |
Pathogen interaction
|
|
Klebsiella spp.
Pseudomonadota |
Bacteria
|
may have positive effects on insect fecundity |
Fertility
|
|
Epichloë alsodes
Ascomycota |
Fungi
|
protect their host by larval mortality |
||
Wolbachia
Pseudomonadota |
Bacteria
|
inducing cytoplasmic incompatibility |
Reproductive manipulation
|
|
Enterococcus entomosocium IIL-ClNone5
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus entomosocium IIL-DmNone1
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus entomosocium IIL-Lc32
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus entomosocium IIL-SpNone6
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus entomosocium IIL-SusEc
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus spodopteracolus IIL-Cl25
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus spodopteracolus IIL-Luf18
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus spodopteracolus IIL-Sp24
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Enterococcus spodopteracolus IIL-SusEm
Bacillota |
Bacteria
|
metabolize different pesticides |
Pesticide metabolization
|
|
Bombilactobacillus bombi BI-1.1
Bacillota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Bombilactobacillus bombi BI-2.5
Bacillota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Bombilactobacillus bombi LV-8.1
Bacillota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Gilliamella
Pseudomonadota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Lactobacillus bombicola BI-4G
Bacillota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Lactobacillus bombicola L5-31
Bacillota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Lactobacillus bombicola OCC3
Bacillota |
Bacteria
|
degrade amygdalin |
Plant secondary metabolites
|
|
Bacteria
|
- |
|||
Enterobacter
Pseudomonadota |
Bacteria
|
- |
||
Enterococcus
Bacillota |
Bacteria
|
- |
||
Enterococcus
Bacillota |
Bacteria
|
- |
||
Bacteria
|
- |
|||
Bacteria
|
- |
|||
Bacteria
|
- |
|||
Bacteria
|
- |
|||
Kaistia
Pseudomonadota |
Bacteria
|
- |
||
Bacteria
|
- |
|||
Providencia
Pseudomonadota |
Bacteria
|
- |
||
Pseudomonas
Pseudomonadota |
Bacteria
|
- |
||
Ralstonia
Pseudomonadota |
Bacteria
|
- |
||
Sediminibacterium
Bacteroidota |
Bacteria
|
- |
Metagenome Information
0 recordsMetagenome sequencing data associated with Spodoptera frugiperda
Run | Platform | Location | Date | BioProject |
---|---|---|---|---|
No metagenomes foundNo metagenome records associated with this host species. |
Amplicon Information
135 recordsAmplicon sequencing data associated with Spodoptera frugiperda
Run | Classification | Platform | Location | Environment |
---|---|---|---|---|
SRR21079106
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079105
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079104
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079103
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079102
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079101
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079100
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079099
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079098
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079115
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079114
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079113
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079112
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079111
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079110
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079109
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079108
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR21079107
AMPLICON |
16S
|
-
|
China
missing |
-
|
SRR8268649
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268653
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268654
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268655
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268656
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268657
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268660
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268661
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268662
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268663
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268664
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268665
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268666
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268667
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268668
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268669
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268671
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268672
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268691
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268690
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268688
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268687
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268686
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268685
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268684
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268683
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268681
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268682
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268680
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268679
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268678
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268677
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268676
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268675
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268674
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268673
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268640
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268641
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268642
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268643
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268644
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268645
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268646
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268647
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR8268648
AMPLICON |
16S
|
-
|
USA
not collected |
-
|
SRR19521766
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521735
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521736
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521737
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521738
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521739
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521740
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521741
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521742
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521743
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521744
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521745
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521746
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521747
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521748
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521749
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521750
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521751
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521752
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521753
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521754
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521755
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521756
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521757
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521758
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521759
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521760
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521761
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521762
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521763
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521764
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521765
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521734
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521767
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521768
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR19521769
AMPLICON |
16S
|
-
|
China
25.06 N 102.75 E |
-
|
SRR10738553
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738552
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738551
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738550
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738549
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738548
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738547
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738546
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738545
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738544
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738543
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738542
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738541
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738540
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738539
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738538
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738537
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738536
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738535
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738534
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738533
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738532
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738531
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738530
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738529
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738528
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738527
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738526
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738525
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738524
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738523
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738522
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738521
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738520
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738519
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
SRR10738518
AMPLICON |
16S
|
-
|
Brazil
not applicable |
-
|
Related Articles
24 recordsResearch articles related to Spodoptera frugiperda
Title | Authors | Journal | Year | DOI |
---|---|---|---|---|
Fu, Y; Zhang, LY; Zhao, QY ... Xu, J; Yang, S
|
JOURNAL OF PEST SCIENCE
|
2024
|
10.1007/s10340-024-01759-0 | |
Gu, M; Lv, SL; Hu, MF ... Liang, P; Zhang, L
|
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
|
2024
|
10.1016/j.pestbp.2024.105891 | |
Qi, Jinfeng; Xiao, Fangjie; Liu, Xingxing ... Xu, Yuxing; Wang, Hang
|
Microbiome
|
2024
|
10.1186/s40168-024-01957-z | |
Liu, Y; Zhang, LN; Cai, XY ... Qiu, BL; Hou, YM
|
Insects
|
2024
|
10.3390/insects15040217 | |
Han, SP; Zhou, YY; Wang, D ... Song, P; He, YZ
|
Insects
|
2023
|
10.3390/insects14030264 | |
Gomes, AFF; de Almeida, LG; Consoli, FL
|
MICROBIAL ECOLOGY
|
2023
|
10.1007/s00248-023-02264-0 | |
Fu, JR; Wang, JH; Huang, XM ... Feng, QL; Deng, HM
|
FRONTIERS IN MICROBIOLOGY
|
2023
|
10.3389/fmicb.2023.1237684 | |
Zhang, Zhe; Peng, Haoran; Yang, Dongchen ... Zhang, Jinlin; Ju, Feng
|
Nature Communications
|
2022
|
10.1038/s41467-022-32903-y | |
Li, YN; Liu, LY; Cai, XM ... Lin, JT; Shu, BS
|
SCIENTIFIC REPORTS
|
2022
|
10.1038/s41598-022-17278-w | |
Chen, BS; Mason, CJ; Peiffer, M ... Shao, YQ; Felton, GW
|
JOURNAL OF INSECT PHYSIOLOGY
|
2022
|
10.1016/j.jinsphys.2022.104369 | |
Motta, EVS; Gage, A; Smith, TE ... Moran, N; Koch, H
|
ELIFE
|
2022
|
10.7554/eLife.82595 | |
Zhao, QY; Zhang, LY; Fu, DY ... Chen, P; Ye, H
|
BMC MICROBIOLOGY
|
2022
|
10.1186/s12866-022-02724-6 | |
Zhang, LY; Yu, H; Fu, DY ... Yang, S; Ye, H
|
FRONTIERS IN MICROBIOLOGY
|
2022
|
10.3389/fmicb.2022.878856 | |
Ugwu, JA; Wenzi, R; Asiegbu, FO
|
JOURNAL OF APPLIED ENTOMOLOGY
|
2022
|
10.1111/jen.13022 | |
Chen, Yaqing; Zhou, Huanchan; Lai, Yushan ... Yu, Xiao-Qiang; Wang, Xiaoyun
|
Frontiers in Microbiology
|
2021
|
10.3389/fmicb.2021.727434 | |
Mason, CJ; Hoover, K; Felton, GW
|
SCIENTIFIC REPORTS
|
2021
|
10.1038/s41598-021-83497-2 | |
Gomes, AFF; Omoto, C; Cônsoli, FL
|
JOURNAL OF PEST SCIENCE
|
2020
|
10.1007/s10340-020-01202-0 | |
Ugwu, JA; Liu, MX; Sun, H; Asiegbu, FO
|
Journal of Applied Entomology
|
2020
|
10.1111/jen.12821 | |
Nuñez-Valdez, ME; Lanois, A; Pagès, S; Duvic, B; Gaudriault, S
|
PLOS ONE
|
2019
|
10.1371/journal.pone.0212809 | |
Jones, AG; Mason, CJ; Felton, GW; Hoover, K
|
SCIENTIFIC REPORTS
|
2019
|
10.1038/s41598-019-39163-9 | |
Mason, CJ; Ray, S; Shikano, I ... Hoover, K; Felton, GW
|
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
|
2019
|
10.1073/pnas.1908748116 | |
Shymanovich, T; Musso, AM; Cech, NB; Faeth, SH
|
Arthropod-Plant Interactions
|
2018
|
10.1007/s11829-018-9635-8 | |
Acevedo, Flor E.; Peiffer, Michelle; Tan, Ching-Wen ... Luthe, Dawn; Felton, Gary
|
Molecular plant-microbe interactions: MPMI
|
2017
|
10.1094/MPMI-11-16-0240-R | |
de Almeida, LG; de Moraes, LAB; Trigo, JR; Omoto, C; Cônsoli, FL
|
PLOS ONE
|
2017
|
10.1371/journal.pone.0174754 |
Core Microbiome Composition
Core microbiome composition is derived from available metagenomic and amplicon sequencing data, calculated based on the relative abundance and coverage of symbionts across different samples. The representativeness of this analysis may vary depending on the number of available samples and should be considered as a reference guide. See calculation details in Help documentation