Functional Symbiont Records
A comprehensive collection of verified insect-symbiont relationships curated from 9000+ scientific literature. Our database currently contains 2657 records spanning multiple insect orders and their associated microbial partners. We also organized the functional records into three main categories, with 20 subcategories, to facilitate future insect symbiont research.
Symbiont Distribution
By classification and symbiont phylum
Functions Overview
Categories of symbiont functions
Functional Symbionts
2657 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Proteus vulgaris Ld01
Pseudomonadota |
Leptinotarsa decemlineataColeoptera |
Bacteria
|
Extracellular
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation |
2024 |
||
Serratia harmoniae
Pseudomonadota |
Harmonia axyridisColeoptera |
Bacteria
|
Intracellular
|
the harlequin ladybird safely harbors Serratia harmoniae, a highly pathogenic bacterium that causes severe mortality in other ladybird species, which confers an intraguild predation advantage to the harlequin ladybird |
2024 |
||
Enterococcus spp.
Bacillota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Extracellular
|
may play a protective role against insect pathogens |
2024 |
||
Klebsiella spp.
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Extracellular
|
may have positive effects on insect fecundity |
2024 |
||
Tuta absolutaLepidoptera |
Bacteria
|
Extracellular
|
2024 |
||||
Sitobion miscanthi L-type symbiont (SMLS)
Pseudomonadota |
Sitobion miscanthiHemiptera |
Bacteria
|
Intracellular
|
SMLS mediates host antiviral defenses to inhibit the propagation of Sitobion miscanthi densovirus(SmDV) |
2024 |
||
Exiguobacterium sp.
Bacillota |
Phormia reginaDiptera |
Bacteria
|
Extracellular
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria |
2024 |
||
Morganella morganii
Pseudomonadota |
Phormia reginaDiptera |
Bacteria
|
Extracellular
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria |
2024 |
||
Serratia marcescens
Pseudomonadota |
Phormia reginaDiptera |
Bacteria
|
Extracellular
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria |
2024 |
||
Cardinium
Bacteroidota |
Sogatella furciferaHemiptera |
Bacteria
|
significantly decreased the diversity of the microbial community |
2024 |
|||
Wolbachia
Pseudomonadota |
Sogatella furciferaHemiptera |
Bacteria
|
Intracellular
|
significantly decreased the diversity of the microbial community |
2024 |
||
Oryctes rhinocerosColeoptera |
Bacteria
|
Extracellular
|
digestive symbiosis with potential plant cell wall degrading microbes |
2024 |
|||
Oryctes rhinocerosColeoptera |
Bacteria
|
Extracellular
|
digestive symbiosis with potential plant cell wall degrading microbes |
2024 |
|||
Asaia
Pseudomonadota |
Aedes aegyptiDiptera |
Bacteria
|
Extracellular
|
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti. |
2024 |
||
Chryseobacterium
Bacteroidota |
Aedes aegyptiDiptera |
Bacteria
|
Extracellular
|
2024 |
|||
Gluconobacter
Pseudomonadota |
Aedes aegyptiDiptera |
Bacteria
|
Extracellular
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection. |
2024 |
||
Acinetobacter calcoaceticus strain NRYSBAC-1
Pseudomonadota |
Scirpophaga incertulasLepidoptera |
Bacteria
|
Extracellular
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro |
2024 |
||
Bacillus sp. strain NRYSBBS-1
Bacillota |
Scirpophaga incertulasLepidoptera |
Bacteria
|
Extracellular
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro |
2024 |
||
Bacillus cereus strain NRYSBBC-1
Bacillota |
Scirpophaga incertulasLepidoptera |
Bacteria
|
Extracellular
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro |
2024 |
||
Bacillus sp. strain NRYSBBP-1
Bacillota |
Scirpophaga incertulasLepidoptera |
Bacteria
|
Extracellular
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro |
2024 |