Bombyx mori
domestic silk moth
Bombyx mori is an insect from the moth family Bombycidae. It is the closest relative of Bombyx mandarina, the wild silk moth. The silkworm is the larva or caterpillar of a silk moth. It is an economically important insect, being a primary producer of silk. A silkworms preferred food are white mulberry leaves, though they may eat other mulberry species and even the osage orange. Domestic silk moths are entirely dependent on humans for reproduction, as a result of millennia of selective breeding. Wild silk moths (other species of Bombyx) are not as commercially viable in the production of silk.
Host Genome
| Genome ID | Level | BUSCO Assessment |
|---|---|---|
| - | Chromosome |
C:98.6%[S:97.9%,D:0.7%],F:0.1%,M:1.3%,n:1367
|
Related Symbionts
35 recordsSymbiont records associated with Bombyx mori
| Classification | Function | Function Tags | Reference | |
|---|---|---|---|---|
|
Bacillus subtilis
Bacillota |
Bacteria
|
Bacillus subtilis generates a variety of primary and secondary metabolites (such as B vitamins and antimicrobial compounds) to provide micronutrients… |
amino acid provision
B vitamin supplementation
antimicrobial activity
pathogen resistance
|
|
|
Pseudomonas fulva ZJU1
Pseudomonadota |
Bacteria
|
Pseudomonas fulva ZJU1 can degrade and utilize the mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ) as the sole energy source, and aft… |
detoxification enzymes
nutrient provision
|
|
|
Bacteria
|
Stenotrophomonas maltophilia (Gut bacteria, Metagenome data) facilitates host resistance against organophosphate insecticides and provides essential … |
amino acid provision
pesticide metabolization
|
||
|
Staphylococcus gallinarum KX912244
Bacillota |
Bacteria
|
Staphylococcus gallinarum KX912244 produces Staphyloxanthin pigment which exhibits considerable biological properties, including in vitro antimicrobi… |
antimicrobial activity
|
|
|
Francisella tularensis
Pseudomonadota |
Bacteria
|
Francisella tularensis inhibits the induction of host immune responses (melanization and nodulation) after infection, but pre-inoculation enhances th… |
antimicrobial activity
pathogen resistance
|
|
|
Mammaliicoccus sciuri
Bacillota |
Bacteria
|
Mammaliicoccus sciuri produces the secreted chitinolytic lysozyme Msp1, which damages fungal cell walls and completely inhibits the spore germination… |
antimicrobial activity
fungal farming
|
|
|
Bacteria
|
The silkworm microbiome contains genes that encode functions, such as the chitinolytic lysozyme Msp1, that confer antimicrobial activity against fung… |
antimicrobial activity
fungal farming
|
||
|
Enterococcus faecalis LX1None
Bacillota |
Bacteria
|
Enterococcus faecalis LX10 exhibits anti-Nosema bombycis activity and plays an important role in protecting Bombyx mori silkworms from microsporidia … |
antimicrobial activity
|
|
|
Aeromonas sp.
Pseudomonadota |
Bacteria
|
Aeromonas sp. is able to utilize CM-cellulose and xylan, indicating degradation capabilities for various carbohydrates including pectin and starch. |
cellulose hydrolysis
xylan hydrolysis
carbohydrate metabolism
pectin hydrolysis
|
|
|
Bacillus pumilus SW41
Bacillota |
Bacteria
|
Bacillus pumilus SW41 processes a lipase gene and exhibits antiviral activity of its protein against B. mori Nucleopolyhedrovirus (BmNPV). |
lipase
antiviral activity
|
|
|
Stenotrophomonas maltophilia SM-1
Pseudomonadota |
Bacteria
|
Stenotrophomonas maltophilia SM-1 confers a significant fitness advantage to Bombyx mori via nutritional (amino acids) upgrading. |
amino acid provision
|
|
|
Stenotrophomonas
Pseudomonadota |
Bacteria
|
Stenotrophomonas confers insecticide resistance against the toxic effects of organophosphate insecticides in Bombyx mori. |
pesticide metabolization
|
|
|
Bacillus pumilus
Bacillota |
Bacteria
|
Bacillus pumilus shows potent antiviral activity against the budded virions of Bombyx mori Nucleopolyhedrovirus (NPV). |
antimicrobial activity
|
|
|
Streptomyces
Actinomycetota |
Bacteria
|
Streptomyces produces Bombyxamycin A, which exhibits significant antibacterial and antiproliferative effects. |
antimicrobial activity
|
|
|
Serratia liquefaciens
Pseudomonadota |
Bacteria
|
Serratia liquefaciens is able to utilize three polysaccharides, including CM-cellulose, xylan, and pectin. |
cellulose hydrolysis
xylan hydrolysis
|
|
|
Bacillus aryabhattai
Bacillota |
Bacteria
|
Bacillus aryabhattai exhibits cellulolytic activity in the gut of Bombyx mori. |
cellulose hydrolysis
|
|
|
Klebsiella pneumoniae
Pseudomonadota |
Bacteria
|
Klebsiella pneumoniae degrades cellulose, xylan, pectin, and starch. |
cellulose hydrolysis
xylan hydrolysis
carbohydrate metabolism
pectin hydrolysis
|
|
|
Citrobacter freundii
Pseudomonadota |
Bacteria
|
Citrobacter freundii degrades cellulose, xylan, pectin, and starch. |
cellulose hydrolysis
xylan hydrolysis
carbohydrate metabolism
pectin hydrolysis
|
|
|
Coprinellus radians
Basidiomycota |
Fungi
|
Coprinellus radians (Fungi) produces cellulase and amylase enzymes. |
cellulose hydrolysis
carbohydrate metabolism
|
|
|
Bacillus circulans
Bacillota |
Bacteria
|
Bacillus circulans degrades cellulose, xylan, pectin, and starch. |
cellulose hydrolysis
xylan hydrolysis
carbohydrate metabolism
pectin hydrolysis
|
|
|
Proteus vulgaris
Pseudomonadota |
Bacteria
|
Proteus vulgaris degrades cellulose, xylan, pectin, and starch. |
cellulose hydrolysis
xylan hydrolysis
carbohydrate metabolism
pectin hydrolysis
|
|
|
Alternaria sp.
Ascomycota |
Fungi
|
Alternaria sp. (Fungi) produces cellulase and amylase enzymes. |
cellulose hydrolysis
carbohydrate metabolism
|
|
|
Enterococcus mundtii EMB156
Bacillota |
Bacteria
|
Enterococcus mundtii EMB156 efficiently produces lactic acid. |
amino acid provision
|
|
|
Bacillus megaterium
Bacillota |
Bacteria
|
Bacillus megaterium produces amylase for starch degradation. |
carbohydrate metabolism
|
|
|
Preussia sp.
Ascomycota |
Fungi
|
Preussia sp. (Fungi) produces cellulase and amylase enzymes. |
cellulose hydrolysis
carbohydrate metabolism
|
|
|
Enterococcus mundtii
Bacillota |
Bacteria
|
Enterococcus mundtii facilitates lactic acid production. |
carbohydrate metabolism
|
|
|
Enterococcus sp.
Bacillota |
Bacteria
|
Enterococcus sp. produces cellulase and amylase enzymes. |
cellulose hydrolysis
carbohydrate metabolism
|
|
|
Stenotrophomonas
Pseudomonadota |
Bacteria
|
Stenotrophomonas produces lipase in the gut environment. |
lipase
|
|
|
Corynebacterium
Actinomycetota |
Bacteria
|
Corynebacterium produces lipase in the gut environment. |
lipase
|
|
|
Brevibacterium
Actinomycetota |
Bacteria
|
Brevibacterium produces lipase in the gut environment. |
lipase
|
|
|
Staphylococcus
Bacillota |
Bacteria
|
Staphylococcus produces lipase in the gut environment. |
lipase
|
|
|
Bacillus sp.
Bacillota |
Bacteria
|
Bacillus sp. produces lipase in the gut environment. |
lipase
|
|
|
Erwinia sp.
Pseudomonadota |
Bacteria
|
Erwinia sp. produces cellulase and amylase enzymes. |
cellulose hydrolysis
carbohydrate metabolism
|
|
|
Pantoea sp.
Pseudomonadota |
Bacteria
|
Pantoea sp. produces cellulase and amylase enzymes. |
cellulose hydrolysis
carbohydrate metabolism
|
|
|
Klebsiella
Pseudomonadota |
Bacteria
|
Klebsiella produces lipase in the gut environment. |
lipase
|
Metagenome Information
4 recordsMetagenome sequencing data associated with Bombyx mori
| Run | Platform | Location | Date | BioProject |
|---|---|---|---|---|
|
SRR29040028
WGS |
ILLUMINA
Illumina HiSeq 1000 |
Laos
|
2021-10/2021-12
|
PRJNA1111294 |
|
SRR24709531
WGS |
OXFORD_NANOPORE
MinION |
India
|
2017-04
|
PRJNA724724 |
|
SRR24709532
WGS |
OXFORD_NANOPORE
MinION |
India
|
2017-04
|
PRJNA724724 |
|
SRR24709533
WGS |
OXFORD_NANOPORE
MinION |
India
|
2017-04
|
PRJNA724724 |
Amplicon Information
19 recordsAmplicon sequencing data associated with Bombyx mori
| Run | Classification | Platform | Location | Environment |
|---|---|---|---|---|
|
SRR27899706
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899689
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899690
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899691
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899692
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899693
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899694
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899695
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899696
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899697
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899698
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899699
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899700
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899701
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899702
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899703
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899704
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR27899705
AMPLICON |
16S
|
-
|
China
|
-
|
|
SRR21053554
AMPLICON |
16S and ITS
|
-
|
Kenya
1.13 S 36.53 E |
ENVO:02000022
ENVO:00002003 |
Related Articles
14 recordsResearch articles related to Bombyx mori
| Title | Authors | Journal | Year | DOI |
|---|---|---|---|---|
|
Zhao, PF; Hong, S; Li, YK ... Gao, HC; Wang, CS
|
MICROBIOME
|
2024
|
10.1186/s40168-024-01764-6 | |
|
Zhang, Nan; Qian, Zhaoyi; He, Jintao ... Felton, Gary W.; Shao, Yongqi
|
Proceedings of the National Academy of Sciences
|
2024
|
10.1073/pnas.2412165121 | |
|
Li, GN; Zheng, X; Zhu, Y; Long, YH; Xia, XJ
|
ENVIRONMENTAL MICROBIOLOGY
|
2022
|
10.1111/1462-2920.15934 | |
|
Zhang, XC; Feng, HH; He, JT ... Zhang, F; Lu, XM
|
PEST MANAGEMENT SCIENCE
|
2022
|
10.1002/ps.6846 | |
|
Chen, BS; Zhang, N; Xie, S ... Lu, XM; Shao, YQ
|
Environment International
|
2020
|
10.1016/j.envint.2020.105886 | |
|
Pandiarajan, Jeyaraj; Revathy, Kannan
|
Ecological Genetics and Genomics
|
2020
|
10.1016/j.egg.2019.100045 | |
|
Shin, Yern-Hyerk; Beom, Ji Yoon; Chung, Beomkoo ... Yoon, Yeo Joon; Oh, Dong-Chan
|
Organic Letters
|
2019
|
10.1021/acs.orglett.9b00384 | |
|
Liu, RH; Wang, WH; Liu, XY ... Zhou, W; Wan, YJ
|
JOURNAL OF INSECT SCIENCE
|
2018
|
10.1093/jisesa/iey111 | |
|
Barretto, DA; Vootla, SK
|
INDIAN JOURNAL OF MICROBIOLOGY
|
2018
|
10.1007/s12088-018-0718-0 | |
|
Liang, XL; Sun, C; Chen, BS ... Lu, XM; Shao, YQ
|
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
|
2018
|
10.1007/s00253-018-8953-1 | |
|
Suzuki, J; Uda, A; Watanabe, K; Shimizu, T; Watarai, M
|
SCIENTIFIC REPORTS
|
2016
|
10.1038/srep31476 | |
|
Liang, Xue; Fu, Yuming; Liu, Hong
|
Acta Astronautica
|
2015
|
10.1016/j.actaastro.2015.07.010 | |
|
Wei Feng, Xiao-Qiang Wang, Wei Zhou, Guang-Ying Liu, Yong-Ji Wan
|
Journal of Insect Science
|
2011
|
10.1673/031.011.13501 | |
|
Anand, A. Alwin Prem; Vennison, S. John; Sankar, S. Gowri ... Geoffrey, C. Jerome; Vendan, S. Ezhil
|
Journal of Insect Science (Online)
|
2010
|
10.1673/031.010.10701 |
Core Microbiome Composition
Core microbiome composition is derived from available metagenomic and amplicon sequencing data, calculated based on the relative abundance and coverage of symbionts across different samples. The representativeness of this analysis may vary depending on the number of available samples and should be considered as a reference guide. See calculation details in Help documentation