Bombyx mori is an insect from the moth family Bombycidae. It is the closest relative of Bombyx mandarina, the wild silk moth. The silkworm is the larva or caterpillar of a silk moth. It is an economically important insect, being a primary producer of silk. A silkworms preferred food are white mulberry leaves, though they may eat other mulberry species and even the osage orange. Domestic silk moths are entirely dependent on humans for reproduction, as a result of millennia of selective breeding. Wild silk moths (other species of Bombyx) are not as commercially viable in the production of silk.

Host Genome

Genome ID Level BUSCO Assessment
- Chromosome
C:98.6%[S:97.9%,D:0.7%],F:0.1%,M:1.3%,n:1367

Related Symbionts

35 records

Symbiont records associated with Bombyx mori

Classification Function Function Tags Reference
Bacteria

Bacillus subtilis generates a variety of primary and secondary metabolites (such as B vitamins and antimicrobial compounds) to provide micronutrients…

amino acid provision B vitamin supplementation antimicrobial activity pathogen resistance
Bacteria

Pseudomonas fulva ZJU1 can degrade and utilize the mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ) as the sole energy source, and aft…

detoxification enzymes nutrient provision
Bacteria

Stenotrophomonas maltophilia (Gut bacteria, Metagenome data) facilitates host resistance against organophosphate insecticides and provides essential …

amino acid provision pesticide metabolization
Bacteria

Staphylococcus gallinarum KX912244 produces Staphyloxanthin pigment which exhibits considerable biological properties, including in vitro antimicrobi…

antimicrobial activity
Bacteria

Francisella tularensis inhibits the induction of host immune responses (melanization and nodulation) after infection, but pre-inoculation enhances th…

antimicrobial activity pathogen resistance
Bacteria

Mammaliicoccus sciuri produces the secreted chitinolytic lysozyme Msp1, which damages fungal cell walls and completely inhibits the spore germination…

antimicrobial activity fungal farming
Bacteria

The silkworm microbiome contains genes that encode functions, such as the chitinolytic lysozyme Msp1, that confer antimicrobial activity against fung…

antimicrobial activity fungal farming
Bacteria

Enterococcus faecalis LX10 exhibits anti-Nosema bombycis activity and plays an important role in protecting Bombyx mori silkworms from microsporidia …

antimicrobial activity
Aeromonas sp.

Pseudomonadota

Bacteria

Aeromonas sp. is able to utilize CM-cellulose and xylan, indicating degradation capabilities for various carbohydrates including pectin and starch.

cellulose hydrolysis xylan hydrolysis carbohydrate metabolism pectin hydrolysis
Bacteria

Bacillus pumilus SW41 processes a lipase gene and exhibits antiviral activity of its protein against B. mori Nucleopolyhedrovirus (BmNPV).

lipase antiviral activity
Bacteria

Stenotrophomonas maltophilia SM-1 confers a significant fitness advantage to Bombyx mori via nutritional (amino acids) upgrading.

amino acid provision
Stenotrophomonas

Pseudomonadota

Bacteria

Stenotrophomonas confers insecticide resistance against the toxic effects of organophosphate insecticides in Bombyx mori.

pesticide metabolization
Bacteria

Bacillus pumilus shows potent antiviral activity against the budded virions of Bombyx mori Nucleopolyhedrovirus (NPV).

antimicrobial activity
Streptomyces

Actinomycetota

Bacteria

Streptomyces produces Bombyxamycin A, which exhibits significant antibacterial and antiproliferative effects.

antimicrobial activity
Bacteria

Serratia liquefaciens is able to utilize three polysaccharides, including CM-cellulose, xylan, and pectin.

cellulose hydrolysis xylan hydrolysis
Bacteria

Bacillus aryabhattai exhibits cellulolytic activity in the gut of Bombyx mori.

cellulose hydrolysis
Bacteria

Klebsiella pneumoniae degrades cellulose, xylan, pectin, and starch.

cellulose hydrolysis xylan hydrolysis carbohydrate metabolism pectin hydrolysis
Citrobacter freundii

Pseudomonadota

Bacteria

Citrobacter freundii degrades cellulose, xylan, pectin, and starch.

cellulose hydrolysis xylan hydrolysis carbohydrate metabolism pectin hydrolysis
Coprinellus radians

Basidiomycota

Fungi

Coprinellus radians (Fungi) produces cellulase and amylase enzymes.

cellulose hydrolysis carbohydrate metabolism
Bacteria

Bacillus circulans degrades cellulose, xylan, pectin, and starch.

cellulose hydrolysis xylan hydrolysis carbohydrate metabolism pectin hydrolysis
Proteus vulgaris

Pseudomonadota

Bacteria

Proteus vulgaris degrades cellulose, xylan, pectin, and starch.

cellulose hydrolysis xylan hydrolysis carbohydrate metabolism pectin hydrolysis
Alternaria sp.

Ascomycota

Fungi

Alternaria sp. (Fungi) produces cellulase and amylase enzymes.

cellulose hydrolysis carbohydrate metabolism
Bacteria

Enterococcus mundtii EMB156 efficiently produces lactic acid.

amino acid provision
Bacteria

Bacillus megaterium produces amylase for starch degradation.

carbohydrate metabolism
Preussia sp.

Ascomycota

Fungi

Preussia sp. (Fungi) produces cellulase and amylase enzymes.

cellulose hydrolysis carbohydrate metabolism
Bacteria

Enterococcus mundtii facilitates lactic acid production.

carbohydrate metabolism
Bacteria

Enterococcus sp. produces cellulase and amylase enzymes.

cellulose hydrolysis carbohydrate metabolism
Stenotrophomonas

Pseudomonadota

Bacteria

Stenotrophomonas produces lipase in the gut environment.

lipase
Corynebacterium

Actinomycetota

Bacteria

Corynebacterium produces lipase in the gut environment.

lipase
Brevibacterium

Actinomycetota

Bacteria

Brevibacterium produces lipase in the gut environment.

lipase
Bacteria

Staphylococcus produces lipase in the gut environment.

lipase
Bacillus sp.

Bacillota

Bacteria

Bacillus sp. produces lipase in the gut environment.

lipase
Erwinia sp.

Pseudomonadota

Bacteria

Erwinia sp. produces cellulase and amylase enzymes.

cellulose hydrolysis carbohydrate metabolism
Pantoea sp.

Pseudomonadota

Bacteria

Pantoea sp. produces cellulase and amylase enzymes.

cellulose hydrolysis carbohydrate metabolism
Klebsiella

Pseudomonadota

Bacteria

Klebsiella produces lipase in the gut environment.

lipase
Back to Table

Metagenome Information

4 records

Metagenome sequencing data associated with Bombyx mori

Run Platform Location Date BioProject
ILLUMINA

Illumina HiSeq 1000

Laos
2021-10/2021-12
PRJNA1111294
OXFORD_NANOPORE

MinION

India
2017-04
PRJNA724724
OXFORD_NANOPORE

MinION

India
2017-04
PRJNA724724
OXFORD_NANOPORE

MinION

India
2017-04
PRJNA724724

Amplicon Information

19 records

Amplicon sequencing data associated with Bombyx mori

Run Classification Platform Location Environment
SRR27899706

AMPLICON

16S
-
China
-
SRR27899689

AMPLICON

16S
-
China
-
SRR27899690

AMPLICON

16S
-
China
-
SRR27899691

AMPLICON

16S
-
China
-
SRR27899692

AMPLICON

16S
-
China
-
SRR27899693

AMPLICON

16S
-
China
-
SRR27899694

AMPLICON

16S
-
China
-
SRR27899695

AMPLICON

16S
-
China
-
SRR27899696

AMPLICON

16S
-
China
-
SRR27899697

AMPLICON

16S
-
China
-
SRR27899698

AMPLICON

16S
-
China
-
SRR27899699

AMPLICON

16S
-
China
-
SRR27899700

AMPLICON

16S
-
China
-
SRR27899701

AMPLICON

16S
-
China
-
SRR27899702

AMPLICON

16S
-
China
-
SRR27899703

AMPLICON

16S
-
China
-
SRR27899704

AMPLICON

16S
-
China
-
SRR27899705

AMPLICON

16S
-
China
-
SRR21053554

AMPLICON

16S and ITS
-
Kenya

1.13 S 36.53 E

ENVO:02000022

ENVO:00002003

Related Articles

14 records

Research articles related to Bombyx mori

Title Authors Journal Year DOI
Zhao, PF; Hong, S; Li, YK ... Gao, HC; Wang, CS
MICROBIOME
2024
10.1186/s40168-024-01764-6
Zhang, Nan; Qian, Zhaoyi; He, Jintao ... Felton, Gary W.; Shao, Yongqi
Proceedings of the National Academy of Sciences
2024
10.1073/pnas.2412165121
Li, GN; Zheng, X; Zhu, Y; Long, YH; Xia, XJ
ENVIRONMENTAL MICROBIOLOGY
2022
10.1111/1462-2920.15934
Zhang, XC; Feng, HH; He, JT ... Zhang, F; Lu, XM
PEST MANAGEMENT SCIENCE
2022
10.1002/ps.6846
Chen, BS; Zhang, N; Xie, S ... Lu, XM; Shao, YQ
Environment International
2020
10.1016/j.envint.2020.105886
Pandiarajan, Jeyaraj; Revathy, Kannan
Ecological Genetics and Genomics
2020
10.1016/j.egg.2019.100045
Shin, Yern-Hyerk; Beom, Ji Yoon; Chung, Beomkoo ... Yoon, Yeo Joon; Oh, Dong-Chan
Organic Letters
2019
10.1021/acs.orglett.9b00384
Liu, RH; Wang, WH; Liu, XY ... Zhou, W; Wan, YJ
JOURNAL OF INSECT SCIENCE
2018
10.1093/jisesa/iey111
Barretto, DA; Vootla, SK
INDIAN JOURNAL OF MICROBIOLOGY
2018
10.1007/s12088-018-0718-0
Liang, XL; Sun, C; Chen, BS ... Lu, XM; Shao, YQ
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
2018
10.1007/s00253-018-8953-1
Suzuki, J; Uda, A; Watanabe, K; Shimizu, T; Watarai, M
SCIENTIFIC REPORTS
2016
10.1038/srep31476
Liang, Xue; Fu, Yuming; Liu, Hong
Acta Astronautica
2015
10.1016/j.actaastro.2015.07.010
Wei Feng, Xiao-Qiang Wang, Wei Zhou, Guang-Ying Liu, Yong-Ji Wan
Journal of Insect Science
2011
10.1673/031.011.13501
Anand, A. Alwin Prem; Vennison, S. John; Sankar, S. Gowri ... Geoffrey, C. Jerome; Vendan, S. Ezhil
Journal of Insect Science (Online)
2010
10.1673/031.010.10701

Core Microbiome Composition

Core microbiome composition is derived from available metagenomic and amplicon sequencing data, calculated based on the relative abundance and coverage of symbionts across different samples. The representativeness of this analysis may vary depending on the number of available samples and should be considered as a reference guide. See calculation details in Help documentation

Interactive Taxonomy Visualization