Curculionidae (Family)
Species List
69 species in Curculionidae
Ambrosiodmus minor
Anisandrus maiche
Cleonus trivittatus
Coccotrypes dactyliperda
Conorhynchus palumbus
Curculio camelliae
Curculio chinensis
Curculio dentipes
Curculio elephas
Curculio glandium
Curculio pellitus
Curculio robustus
Curculio sikkimensis
Curculio venosus
Cyrtotrachelus buqueti
Dendroctonus adjunctus
Dendroctonus armandi
Dendroctonus frontalis
Dendroctonus micans
Dendroctonus ponderosae
mountain pine beetle
Dendroctonus rhizophagus
Dendroctonus rufipennis
Dendroctonus simplex
Dendroctonus valens
red turpentine beetle
Euscepes postfasciatus
Euwallacea fornicatus
tea shot-hole borer or polyphagous shot-hole borer
Euwallacea perbrevis
Gonipterus platensis
Hylobius abietis
Hypothenemus hampei
coffee borer beetle or coffee berry borer
Ips acuminatus
Ips cembrae
Ips duplicatus
Ips nitidus
Ips paraconfusus
Ips pini
Ips sexdentatus
Ips sp.
Ips typographus
European spruce bark beetle
Maximus mimosae
Menecleonus virgatus
Metapocyrtus yonagunianus
Nedyus quadrimaculatus
Odoiporus longicollis
Otiorhynchus sulcatus
Pachyrhynchus infernalis
Pagiophloeus tsushimanus
Phyllobius maculicornis
Phyllobius roboretanus
Pimelocerus perforatus
Platypus cylindrus
Platypus koryoensis
Polydrusus formosus
Polygraphus poligraphus
Rhabdoscelus lineaticollis
Rhynchophorus ferrugineus
red palm weevil, Asian palm weevil or sago palm weevil
Sipalinus gigas
Sitona obsoletus
Sitophilus granarius
Sitophilus oryzae
rice weevil
Sitophilus sp.
Sitophilus zeamais
Xyleborinus saxesenii
Xyleborus affinis
Xyleborus glabratus
Xylosandrus compactus
Xylosandrus crassiusculus
Xylosandrus germanus
Xylosandrus morigerus
Related Symbionts
229 recordsSymbiont records associated with Curculionidae family
Classification | Host | Function | Function Tags | Reference | |
---|---|---|---|---|---|
Monacrosporium ambrosium
Ascomycota |
Fungi
|
provides not only the food and sterol skeleton necessary for the development of the beetle during its larval stages, but also serves as a producer of… |
Nutrient provision
Antimicrobials
Fungal farming
|
||
Pseudomonas sp. 7 B321
Pseudomonadota |
Bacteria
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium … |
- | ||
Rahnella aquatilis B3None1
Pseudomonadota |
Bacteria
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium … |
- | ||
Serratia liquefaciens B31None
Pseudomonadota |
Bacteria
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium … |
- | ||
Acinetobacter sp.
Pseudomonadota |
Bacteria
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significa… |
Plant secondary metabolites
|
||
Pseudomonas fulva
Pseudomonadota |
Bacteria
|
Antibiotic-treated larvae showed lower caffeine-degrading activity and increased mortality. These deficients were recovered by inoculation of the caf… |
Plant secondary metabolites
|
||
Leptographium procerum
Ascomycota |
Fungi
|
enhances the survivorship and overall fitness of invasive beetles by degrading the host phenolic naringenin, ultimately overcoming the tree defenses … |
Plant secondary metabolites
|
||
Burkholderia
Pseudomonadota |
Bacteria
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and faci… |
Digestive enzymes
|
||
Novosphingobium
Pseudomonadota |
Bacteria
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and faci… |
Digestive enzymes
|
||
Rhodotorula
Basidiomycota |
Fungi
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and faci… |
Digestive enzymes
|
||
Grosmannia clavigera
Ascomycota |
Fungi
|
Grosmannia clavigera can detoxify oleoresin terpenoids (conifer-defence chemicals) and utilize them as carbon sources. It allows host insects to tole… |
Plant secondary metabolites
|
||
Raffaelea lauricola
Ascomycota |
Fungi
|
Volatile cues from fungal symbionts may function as a mechanism to locate established fungal gardens of conspecific beetles (suitable microhabitat) b… |
Fungal farming
|
||
Pseudomonas fulva
Pseudomonadota |
Bacteria
|
P. fulva processed gene coding one subunit of caffeine demethylase, and reinstatement of P. fulva in germ-free H. hampei degraded all caffeine consum… |
Plant secondary metabolites
|
||
Sodalis pierantonius
Pseudomonadota |
Bacteria
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including meta… |
Growth and Development
|
||
Graphium euwallaceae
Ascomycota |
Fungi
|
G. euwallacea is the predominant symbiont in the initial stages of gallery formation and the main food source (i.e., dominant fungus) for larvae duri… |
Fungal farming
|
||
Endoconidiophora polonica
Ascomycota |
Fungi
|
volatile compounds produced by Fungi may act as recognition signals for bark beetles to maintain specific microbial communities that might have impac… |
Chemical biosynthesis
|
||
Grosmannia europhioides
Ascomycota |
Fungi
|
volatile compounds produced by Fungi may act as recognition signals for bark beetles to maintain specific microbial communities that might have impac… |
Chemical biosynthesis
|
||
Grosmannia penicillata
Ascomycota |
Fungi
|
volatile compounds produced by Fungi may act as recognition signals for bark beetles to maintain specific microbial communities that might have impac… |
Chemical biosynthesis
|
||
Ophiostoma bicolor
Ascomycota |
Fungi
|
volatile compounds produced by Fungi may act as recognition signals for bark beetles to maintain specific microbial communities that might have impac… |
Chemical biosynthesis
|
||
Ophiostoma piceae
Ascomycota |
Fungi
|
volatile compounds produced by Fungi may act as recognition signals for bark beetles to maintain specific microbial communities that might have impac… |
Chemical biosynthesis
|
||
Leptographium procerum CMW25626
Ascomycota |
Fungi
|
consumption of one common carbon source d-glucose over another carbohydrate d-pinitol in pine phloem tissues by the fungus inhibit D. valens larval w… |
Growth and Development
|
||
Klebsiella oxytoca
Pseudomonadota |
Bacteria
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activi… |
Plant secondary metabolites
|
||
Pantoea 1C4
Pseudomonadota |
Bacteria
|
plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing… |
Nutrient provision
Antimicrobials
|
||
Pantoea 1C4
Pseudomonadota |
Bacteria
|
plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing… |
Nutrient provision
Antimicrobials
|
||
Pseudomonas aeroginosa
Pseudomonadota |
Bacteria
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activi… |
Plant secondary metabolites
|
||
Sitophilus oryzae principal endosymbiont (SOPE)
Pseudomonadota |
Bacteria
|
induces the specific differentiation of the bacteriocytes, increases mitochondrial oxidative phosphorylation through the supply of pantothenic acid a… |
Nutrient provision
|
||
Grosmannia clavigera
Ascomycota |
Fungi
|
The symbiotic fungus can utilize terpenes as carbon sources. Genes involved in terpene-degradation were expressed in symbionts cultured with plant ma… |
Digestive enzymes
|
||
Grosmannia europhioides
Ascomycota |
Fungi
|
produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles’ aggregation pheromone blend, facilitating aggregation behav… |
Chemical biosynthesis
|
||
Sodalis praecaptivus
Pseudomonadota |
Bacteria
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype |
- | ||
Fusarium euwallaceae
Ascomycota |
Fungi
|
Caring for the fungal gardens involves cooperative behavior, and could be related to the decrease of inter- and intra-specific competition for food |
Fungal farming
|
||
Raffaelea lauricola
Ascomycota |
Fungi
|
Caring for the fungal gardens involves cooperative behavior, and could be related to the decrease of inter- and intra-specific competition for food |
Fungal farming
|
||
Vairimorpha or a new genus
Microsporidia |
Fungi
|
Symptoms in infected adults were identified by an abnormal abdomen with malformation of the second pair of wings, impairing their flight activity. |
Growth and Development
|
||
Sodalis glossinidius
Pseudomonadota |
Bacteria
|
maintains and expresses inv/spa genes encoding a type III secretion system homologous to that used for invasion by bacterial pathogens |
- | ||
Streptomyces griseus XylebKG-1
Actinomycetota |
Bacteria
|
Cycloheximide is produced, which inhibits the growth of parasitic fungi Nectria spp. and protects mutualistic fungi Raffaelea spp. |
Antimicrobials
|
||
Bacillus flexus
Bacillota |
Bacteria
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
Pesticide metabolization
|
||
Bacillus subtilis
Bacillota |
Bacteria
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
Pesticide metabolization
|
||
Enterobacter sp.
Pseudomonadota |
Bacteria
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
Pesticide metabolization
|
||
Leptographium abietinum
Ascomycota |
Fungi
|
inoculation with L. abietinum significantly reduced concentrations of a tree defensive compound, (+)-4-carene, in growth media |
Plant secondary metabolites
|
||
Leptographium abietinum
Ascomycota |
Fungi
|
inoculation with L. abietinum significantly reduced concentrations of a tree defensive compound, (+)-3-carene, in growth media |
Plant secondary metabolites
|
||
Citrobacter
Pseudomonadota |
Bacteria
|
can degrade plant polysaccharides and confer their host optimal adaptation to its environment by modulating its metabolism |
Sugar metabolism
|
||
Enterobacter
Pseudomonadota |
Bacteria
|
can degrade plant polysaccharides and confer their host optimal adaptation to its environment by modulating its metabolism |
Sugar metabolism
|
||
Klebsiella
Pseudomonadota |
Bacteria
|
can degrade plant polysaccharides and confer their host optimal adaptation to its environment by modulating its metabolism |
Sugar metabolism
|
||
Serratia
Pseudomonadota |
Bacteria
|
can degrade plant polysaccharides and confer their host optimal adaptation to its environment by modulating its metabolism |
Sugar metabolism
|
||
Wolbachia
Pseudomonadota |
Bacteria
|
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect |
Fertility
|
||
Candida kashinagacola
Ascomycota |
Fungi
|
show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure |
Digestive enzymes
|
||
Meyerozyma guilliermondii
Ascomycota |
Fungi
|
show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure |
Digestive enzymes
|
||
Grosmannia europhioides
Ascomycota |
Fungi
|
produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend |
Chemical biosynthesis
|
||
Grosmannia penicillata
Ascomycota |
Fungi
|
produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend |
Chemical biosynthesis
|
||
Grosmannia clavigera
Ascomycota |
Fungi
|
Increased success of host insect on jack pines (host plant) reduces food quality for interspecific competitors |
- | ||
Grosmannia clavigera
Ascomycota |
Fungi
|
fungal pathogenicity likely is more important in aiding MPB colonization and development within the host tree |
- | ||
Pseudomonas
Pseudomonadota |
Bacteria
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth |
Growth and Development
Immune priming
|
||
Rahnella aquatilis
Pseudomonadota |
Bacteria
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth |
Growth and Development
Immune priming
|
||
Serratia liquefaciens
Pseudomonadota |
Bacteria
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth |
Growth and Development
Immune priming
|
||
Grosmannia clavigera
Ascomycota |
Fungi
|
Oxygenated monoterpenes produced by microbial activity is used as host (beetle) location cues by parasitoids |
- | ||
Acinetobacter sp. AS23
Pseudomonadota |
Bacteria
|
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation |
Plant secondary metabolites
|
||
Rahnella aquatilis
Pseudomonadota |
Bacteria
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively |
Plant secondary metabolites
|
||
Ambrosiella grosmanniae
Ascomycota |
Fungi
|
X. germanus exhibited an arrestment response to volatiles of A. grosmanniae, but not antagonistic fungi |
- | ||
Enterobacter spp.
Pseudomonadota |
Bacteria
|
Bacteria isolated from pine engravers decreased concentrations of (-)-α-pinene, myrcene, and 3-carene |
- | ||
Erwinia spp.
Pseudomonadota |
Bacteria
|
Bacteria isolated from pine engravers decreased concentrations of (-)-α-pinene, myrcene, and 3-carene |
- | ||
Serratia spp.
Pseudomonadota |
Bacteria
|
Bacteria isolated from pine engravers decreased concentrations of (-)-α-pinene, myrcene, and 3-carene |
- | ||
Sodalis pierantonius
Pseudomonadota |
Bacteria
|
produce vitamins and essential amino acids required for insect development and cuticle biosynthesis |
Nutrient provision
|
||
Enterobacter cloacae
Pseudomonadota |
Bacteria
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism |
Nutrient provision
Growth and Development
|
||
Lactococcus lactis
Bacillota |
Bacteria
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism |
Nutrient provision
Growth and Development
|
||
Citrobacter
Pseudomonadota |
Bacteria
|
associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation |
Nitrogen fixation
Digestive enzymes
|
||
Citrobacter
Pseudomonadota |
Bacteria
|
associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation |
Nitrogen fixation
Digestive enzymes
|
||
Candidatus Sodalis pierantonius
Pseudomonadota |
Bacteria
|
Tyrosine precursor provisioning, supplementation of some essential amino acids and vitamins |
Nutrient provision
|
||
Sodalis pierantonius
Pseudomonadota |
Bacteria
|
may infulence immunity, metabolism, metal control, apoptosis, and bacterial stress response |
Immune priming
|
||
Candidatus Sodalis pierantonius str. SZPE
Pseudomonadota |
Bacteria
|
SZPE suppression delayed weevil emergence, which reduced the insect population growth rate |
Growth and Development
|
||
Corynebacterium variabile
Actinomycetota |
Bacteria
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol |
Plant secondary metabolites
|
||
Pseudomonas aeruginosa
Pseudomonadota |
Bacteria
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol |
Plant secondary metabolites
|
||
Serratia marcescens
Pseudomonadota |
Bacteria
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol |
Plant secondary metabolites
|
||
Beauveria bassiana
Ascomycota |
Fungi
|
B. bassiana has the insecticidal activity on X. affinis adult females and their progeny |
Fertility
|
||
Acremonium
Ascomycota |
Fungi
|
may grow confined mostly in beetle galleries and play a role in the beetle's nutrition |
Nutrient provision
|
||
Acremonium masseei
Ascomycota |
Fungi
|
may grow confined mostly in beetle galleries and play a role in the beetle's nutrition |
Nutrient provision
|
||
Acremonium morum
Ascomycota |
Fungi
|
may grow confined mostly in beetle galleries and play a role in the beetle's nutrition |
Nutrient provision
|
||
Rahnella sp. ChDrAdgB13
Pseudomonadota |
Bacteria
|
has metabolic capacity to degrade xylan by bifunctional xylanase-ferulic acid esterase |
Digestive enzymes
|
||
Endoconidiophora rufipennis
Ascomycota |
Fungi
|
Semiochemicals produced by symbiont can act as an anti-attractant for Ips typographus |
Chemical biosynthesis
|
||
Rickettsia
Pseudomonadota |
Bacteria
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence |
Reproductive manipulation
|
||
Serratia proteamaculans
Pseudomonadota |
Bacteria
|
display strong cellulolytic activity and process a single endoglucanase encoding gene |
Digestive enzymes
|
||
Wolbachia
Pseudomonadota |
Bacteria
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence |
Reproductive manipulation
|
||
Nardonella
Pseudomonadota |
Bacteria
|
tyrosine provisioning, which is needed for insect’s cuticle formation and hardening |
Nutrient provision
|
||
Burkholderia
Pseudomonadota |
Bacteria
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
Plant secondary metabolites
|
||
Pseudomonas
Pseudomonadota |
Bacteria
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
Plant secondary metabolites
|
||
Pseudomonas typographi
Pseudomonadota |
Bacteria
|
P. typographi aids I. typographi nutrition and resistance to fungal pathogens |
Antimicrobials
Nutrient provision
|
||
Rahnella
Pseudomonadota |
Bacteria
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
Plant secondary metabolites
|
||
Rickettsia
Pseudomonadota |
Bacteria
|
potential defensive properties against he parasitoid Microctonus aethiopoides |
Natural enemy resistance
|
||
Serratia
Pseudomonadota |
Bacteria
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
Plant secondary metabolites
|
||
Wolbachia
Pseudomonadota |
Bacteria
|
potential defensive properties against he parasitoid Microctonus aethiopoides |
Natural enemy resistance
|
||
Nardonella spp.
Pseudomonadota |
Bacteria
|
endosymbiont is involved in normal growth and development of the host weevil |
Growth and Development
|
||
Ophiostoma minus
Ascomycota |
Fungi
|
The phenoloxidase ratio increased significantly in the larvae with O. minus |
Immune priming
|
||
Fusarium ambrosium
Ascomycota |
Fungi
|
associated with adult beetles and lesions surrounding the beetle galleries |
- | ||
Fusarium ambrosium
Ascomycota |
Fungi
|
associated with adult beetles and lesions surrounding the beetle galleries |
- | ||
Ophiostoma ips
Ascomycota |
Fungi
|
suppress decomposition of pine sapwood by competing with wood-decay fungi |
Plant defense
|
||
Ophiostoma ips
Ascomycota |
Fungi
|
suppress decomposition of pine sapwood by competing with wood-decay fungi |
Plant defense
|
||
Ophiostoma ips
Ascomycota |
Fungi
|
suppress decomposition of pine sapwood by competing with wood-decay fungi |
Plant defense
|
||
Raffaelea fusca
Ascomycota |
Fungi
|
suppress decomposition of pine sapwood by competing with wood-decay fungi |
Plant defense
|
||
Raffaelea fusca
Ascomycota |
Fungi
|
suppress decomposition of pine sapwood by competing with wood-decay fungi |
Plant defense
|
||
Raffaelea fusca
Ascomycota |
Fungi
|
suppress decomposition of pine sapwood by competing with wood-decay fungi |
Plant defense
|
||
Acremonium sp.
Ascomycota |
Fungi
|
fungal volatiles as attractive cues during host selection by X. germanus |
- | ||
Acinetobacter sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-11 oxidation pathway |
Plant secondary metabolites
|
||
Delftia sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-19 oxidation pathway |
Plant secondary metabolites
|
||
Enterococcus sp.
Bacillota |
Bacteria
|
might contribute to caffeine breakdown using the C-10 oxidation pathway |
Plant secondary metabolites
|
||
Erwinia sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-12 oxidation pathway |
Plant secondary metabolites
|
||
Klebsiella sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-17 oxidation pathway |
Plant secondary metabolites
|
||
Kosakonia sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-16 oxidation pathway |
Plant secondary metabolites
|
||
Lactococcus sp.
Bacillota |
Bacteria
|
might contribute to caffeine breakdown using the C-13 oxidation pathway |
Plant secondary metabolites
|
||
Leuconostoc sp.
Bacillota |
Bacteria
|
might contribute to caffeine breakdown using the C-18 oxidation pathway |
Plant secondary metabolites
|
||
Pantoea sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-14 oxidation pathway |
Plant secondary metabolites
|
||
Pseudomonas sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-15 oxidation pathway |
Plant secondary metabolites
|
||
Stenotrophomonas sp.
Pseudomonadota |
Bacteria
|
might contribute to caffeine breakdown using the C-20 oxidation pathway |
Plant secondary metabolites
|
||
Bacillus sp.
Bacillota |
Bacteria
|
might contribute to caffeine breakdown using the C-8 oxidation pathway |
Plant secondary metabolites
|
||
Paenibacillus sp.
Bacillota |
Bacteria
|
might contribute to caffeine breakdown using the C-9 oxidation pathway |
Plant secondary metabolites
|
||
Cyberlindnera americana ChDrAdgY46
Ascomycota |
Fungi
|
play a role in the detoxification process of tree defensive chemicals |
Plant secondary metabolites
|
||
Bacteria
|
beetle-associated bacterial symbionts mediate tea saponin degradation |
Digestive enzymes
Plant secondary metabolites
|
|||
Leptographium procerum
Ascomycota |
Fungi
|
Inducing host pines to produce 3-carene, an attractant of the beetle |
Chemical biosynthesis
|
||
Pseudomonas mandelii
Pseudomonadota |
Bacteria
|
P. mandelii decreased concentrations of all monoterpenes by 15–24% |
Plant secondary metabolites
|
||
Bacteria
|
Defense against pathogenic bacteria (via host immune stimulation) |
Pathogen interaction
|
|||
Streptomyces
Actinomycetota |
Bacteria
|
Defense against antagonistic fungus of the beetle's cultivar |
Antimicrobials
|
||
Enterobacter
Pseudomonadota |
Bacteria
|
Anti-phytopathogenic fungi activity; growth and development |
Antimicrobials
|
||
Citrobacter
Pseudomonadota |
Bacteria
|
provide nitrogen fixation to hosts for desert environments |
Nitrogen fixation
|
||
Enterobacter
Pseudomonadota |
Bacteria
|
provide nitrogen fixation to hosts for desert environments |
Nitrogen fixation
|
||
Klebsiella pneumonia
Pseudomonadota |
Bacteria
|
provide nitrogen fixation to hosts for desert environments |
Nitrogen fixation
|
||
Klebsiella spp.
Pseudomonadota |
Bacteria
|
provide nitrogen fixation to hosts for desert environments |
Nitrogen fixation
|
||
Klebsiella spp.
Pseudomonadota |
Bacteria
|
provide nitrogen fixation to hosts for desert environments |
Nitrogen fixation
|
||
Raffaelea lauricola
Ascomycota |
Fungi
|
Host tree pathogen and nutrition provision during invasion |
Nutrient provision
Antimicrobials
|
||
Serritia marcescens
Pseudomonadota |
Bacteria
|
S. marcescens reduced 49–79% of 3-carene and (−)-β-pinene |
Plant secondary metabolites
|
||
Fusarium solani
Ascomycota |
Fungi
|
promoters of the pathogenic behavior of ambrosia beetles |
- | ||
Bacteria
|
confer protection by priming the immune system of host |
Immune priming
|
|||
Grosmannia europhioides
Ascomycota |
Fungi
|
fungi have the ability to degrade conifer phenolics |
Plant secondary metabolites
|
||
Grosmannia penicillata
Ascomycota |
Fungi
|
fungi have the ability to degrade conifer phenolics |
Plant secondary metabolites
|
||
Acinetobacter sp. AS23
Pseudomonadota |
Bacteria
|
endow its host with the ability to degrade saponin |
Plant secondary metabolites
|
||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
represent the primary symbiont of Curculio weevils |
- | ||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
represent the primary symbiont of Curculio weevils |
- | ||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
represent the primary symbiont of Curculio weevils |
- | ||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
represent the primary symbiont of Curculio weevils |
- | ||
Ambrosiozyma sp.
Ascomycota |
Fungi
|
show CM-cellulase activity and pectinase activity |
Digestive enzymes
|
||
Candida homilentoma
Ascomycota |
Fungi
|
show CM-cellulase activity and pectinase activity |
Digestive enzymes
|
||
Cryptococcus sp.
Basidiomycota |
Fungi
|
has the potential of degrading plant cell wall |
Digestive enzymes
|
||
Kuraishia molischiana
Ascomycota |
Fungi
|
has the potential of degrading plant cell wall |
Digestive enzymes
|
||
Nakazawaea ambrosiae
Ascomycota |
Fungi
|
has the potential of degrading plant cell wall |
Digestive enzymes
|
||
Ogataea ramenticola
Ascomycota |
Fungi
|
has the potential of degrading plant cell wall |
Digestive enzymes
|
||
Wickerhamomyces bisporus
Ascomycota |
Fungi
|
has the potential of degrading plant cell wall |
Digestive enzymes
|
||
Enterobacteriaceae
Pseudomonadota |
Bacteria
|
degrade the diterpene acids of Norway spruce |
Plant secondary metabolites
|
||
Bacteria
|
Detoxification of plant secondary compounds |
Plant secondary metabolites
|
|||
Bacteria
|
Detoxification of plant secondary compounds |
Plant secondary metabolites
|
|||
Pseudomonas fulva
Pseudomonadota |
Bacteria
|
Detoxification of plant secondary compounds |
Plant secondary metabolites
|
||
Wolbachia
Pseudomonadota |
Bacteria
|
it causes nucleocytoplasmic incompatibility |
Reproductive manipulation
|
||
Rahnella
Pseudomonadota |
Bacteria
|
It may specialize in terpenoid metabolism. |
Plant secondary metabolites
|
||
Serratia
Pseudomonadota |
Bacteria
|
It may specialize in terpenoid metabolism. |
Plant secondary metabolites
|
||
Leptographium procerum
Ascomycota |
Fungi
|
compete with RTB larvae for carbohydrates |
- | ||
Ophiostoma minus
Ascomycota |
Fungi
|
compete with RTB larvae for carbohydrates |
- | ||
Rickettsia
Pseudomonadota |
Bacteria
|
required for oogenesis in C. dactyliperda |
Fertility
|
||
Wolbachia
Pseudomonadota |
Bacteria
|
required for oogenesis in C. dactyliperda |
Fertility
|
||
Pseudomonas sp,
Pseudomonadota |
Bacteria
|
Degraded 20–50% of α-pinene (by GC-MS) |
Plant secondary metabolites
|
||
Rahnella aquatilis
Pseudomonadota |
Bacteria
|
Degraded 20–50% of α-pinene (by GC-MS) |
Plant secondary metabolites
|
||
Serratia sp.
Pseudomonadota |
Bacteria
|
Degraded 20–50% of α-pinene (by GC-MS) |
Plant secondary metabolites
|
||
Grosmannia penicillata
Ascomycota |
Fungi
|
produce beetle aggregation pheromones |
Chemical biosynthesis
|
||
Nardonella
Pseudomonadota |
Bacteria
|
participate in tyrosine production |
Nutrient provision
|
||
Bacteria
|
Bamboo lignocellulose degradation |
Digestive enzymes
|
|||
Candidatus Nardonella
Pseudomonadota |
Bacteria
|
Tyrosine precursor provisioning |
Nutrient provision
|
||
Candidatus Nardonella
Pseudomonadota |
Bacteria
|
Tyrosine precursor provisioning |
Nutrient provision
|
||
Candidatus Nardonella
Pseudomonadota |
Bacteria
|
Tyrosine precursor provisioning |
Nutrient provision
|
||
Candidatus Nardonella
Pseudomonadota |
Bacteria
|
Tyrosine precursor provisioning |
Nutrient provision
|
||
Bacteria
|
Nitrogen fixation |
Nitrogen fixation
|
|||
Cylindrobasidium ipidophilum
Basidiomycota |
Fungi
|
wood decay fungi |
- | ||
Ambrosiella cleistominuta
Ascomycota |
Fungi
|
- |
- | ||
Ambrosiella roeperi
Ascomycota |
Fungi
|
- |
- | ||
Ambrosiella roeperi
Ascomycota |
Fungi
|
- |
- | ||
Ambrosiella xylebori
Ascomycota |
Fungi
|
- |
- | ||
bacteria
- |
Bacteria
|
- |
- | ||
bacteria
- |
Bacteria
|
- |
- | ||
bacteria
- |
Bacteria
|
- |
- | ||
Bacteria and Fungi
|
- |
- | |||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
- |
- | ||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
- |
- | ||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
- |
- | ||
Candidatus Curculioniphilus buchneri
Pseudomonadota |
Bacteria
|
- |
- | ||
Candidatus Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Curculioniphilus
Pseudomonadota |
Bacteria
|
- |
- | ||
Endoconidiophora
Ascomycota |
Fungi
|
- |
- | ||
Enterobacteriaceae
Pseudomonadota |
Bacteria
|
- |
- | ||
Entomoplasmataceae
Mycoplasmatota |
Bacteria
|
- |
- | ||
Fusarium akasia
Ascomycota |
Fungi
|
- |
- | ||
Fusarium awan
Ascomycota |
Fungi
|
- |
- | ||
Fusarium mekan
Ascomycota |
Fungi
|
- |
- | ||
Fusarium rekanum sp. Nov
Ascomycota |
Fungi
|
- |
- | ||
Fusarium solani
Ascomycota |
Fungi
|
- |
- | ||
Fusarium sp.
Ascomycota |
Fungi
|
- |
- | ||
Fusarium variousi
Ascomycota |
Fungi
|
- |
- | ||
Fusarium warna
Ascomycota |
Fungi
|
- |
- | ||
Bacteria
|
- |
- | |||
Grosmannia clavigera
Ascomycota |
Fungi
|
- |
- | ||
Grosmannia clavigera
Ascomycota |
Fungi
|
- |
- | ||
Bacteria
|
- |
- | |||
Bacteria
|
- |
- | |||
Bacteria
|
- |
- | |||
Bacteria
|
- |
- | |||
Bacteria
|
- |
- | |||
Bacteria and Fungi
|
- |
- | |||
Fungi
|
- |
- | |||
Lactobacillaceae
Bacillota |
Bacteria
|
- |
- | ||
Leptographium procerum
Ascomycota |
Fungi
|
- |
- | ||
Leptographium sanjiangyuanense sp. nov.
Ascomycota |
Fungi
|
- |
- | ||
Leptographium zekuense sp. nov.
Ascomycota |
Fungi
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Nardonella
Pseudomonadota |
Bacteria
|
- |
- | ||
Ophiostoma huangnanense sp. nov.
Ascomycota |
Fungi
|
- |
- | ||
Ophiostoma maixiuense sp. nov.
Ascomycota |
Fungi
|
- |
- | ||
Ophiostoma montium
Ascomycota |
Fungi
|
- |
- | ||
Ophiostoma sanum sp. nov.
Ascomycota |
Fungi
|
- |
- | ||
Ophiostoma sp.
Ascomycota |
Fungi
|
- |
- | ||
Raffaelea quercina sp. nov.
Ascomycota |
Fungi
|
- |
- | ||
Rahnella
Pseudomonadota |
Bacteria
|
- |
- | ||
Rickettsia
Pseudomonadota |
Bacteria
|
- |
- | ||
Sarocladium strictum
Ascomycota |
Fungi
|
- |
- | ||
Serratia
Pseudomonadota |
Bacteria
|
- |
- | ||
Serratia grimesii
Pseudomonadota |
Bacteria
|
- |
- | ||
Sodalis
Pseudomonadota |
Bacteria
|
- |
- | ||
Sodalis
Pseudomonadota |
Bacteria
|
- |
- | ||
Sodalis pierantonius
Pseudomonadota |
Bacteria
|
- |
- | ||
Spiroplasma
Mycoplasmatota |
Bacteria
|
- |
- | ||
Spiroplasma
Mycoplasmatota |
Bacteria
|
- |
- | ||
Streptococcaceae
Bacillota |
Bacteria
|
- |
- | ||
Wolbachia
Pseudomonadota |
Bacteria
|
- |
- |
Metagenome Information
103 recordsMetagenome sequencing data associated with Curculionidae family
Run | Platform | Host | Location | Date | BioProject |
---|---|---|---|---|---|
SRR24210639
WGS |
ILLUMINA
Illumina NovaSeq 6000 |
China
35.3275 N 101.9361 E |
2020-07
|
PRJNA956988 | |
SRR24210638
WGS |
ILLUMINA
Illumina NovaSeq 6000 |
China
35.3275 N 101.9361 E |
2020-07
|
PRJNA956988 | |
SRR24210637
WGS |
ILLUMINA
Illumina NovaSeq 6000 |
China
35.3275 N 101.9361 E |
2020-07
|
PRJNA956988 | |
SRR24210636
WGS |
ILLUMINA
Illumina NovaSeq 6000 |
China
35.3275 N 101.9361 E |
2020-07
|
PRJNA956988 | |
SRR24210635
WGS |
ILLUMINA
Illumina NovaSeq 6000 |
China
35.3275 N 101.9361 E |
2020-07
|
PRJNA956988 | |
SRR24210634
WGS |
ILLUMINA
Illumina NovaSeq 6000 |
China
35.3275 N 101.9361 E |
2020-07
|
PRJNA956988 | |
SRR27874678
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.853770 N 8.377150 E |
2020
|
PRJNA1072544 | |
SRR27874679
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874680
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.853770 N 8.377150 E |
2020
|
PRJNA1072544 | |
SRR27874681
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.853770 N 8.377150 E |
2020
|
PRJNA1072544 | |
SRR27874682
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874683
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874684
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874685
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874686
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874687
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874688
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874689
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874690
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874666
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874691
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874692
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874693
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874694
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874695
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874696
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874697
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874667
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874699
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874700
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874701
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874702
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874698
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.604754 N 8.236137 E |
2020
|
PRJNA1072544 | |
SRR27874668
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874669
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874670
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874671
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.660197 N 7.985386 E |
2020
|
PRJNA1072544 | |
SRR27874677
WGS |
ILLUMINA
NextSeq 2000 |
Germany
49.853770 N 8.377150 E |
2020
|
PRJNA1072544 | |
SRR14139298
WGS |
ILLUMINA
HiSeq X Ten |
China
29.38 N 103.30 E |
2019-07-15
|
PRJNA719486 | |
SRR14139297
WGS |
ILLUMINA
HiSeq X Ten |
China
29.38 N 103.30 E |
2019-07-15
|
PRJNA719486 | |
SRR14139296
WGS |
ILLUMINA
HiSeq X Ten |
China
29.38 N 103.30 E |
2019-07-15
|
PRJNA719486 | |
SRR14139295
WGS |
ILLUMINA
HiSeq X Ten |
China
29.38 N 103.30 E |
2019-07-15
|
PRJNA719486 | |
SRR14139294
WGS |
ILLUMINA
HiSeq X Ten |
China
29.38 N 103.30 E |
2019-07-15
|
PRJNA719486 | |
SRR14139293
WGS |
ILLUMINA
HiSeq X Ten |
China
29.38 N 103.30 E |
2019-07-15
|
PRJNA719486 | |
SRR22996350
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996327
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996328
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996333
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996334
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996335
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996336
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996337
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996338
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996339
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996340
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996341
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996342
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996343
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996344
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996345
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996346
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996347
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996348
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996349
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996351
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996352
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996353
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996354
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996355
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996356
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR22996357
RNA-Seq |
ILLUMINA
Illumina HiSeq 4000 |
France
|
2011/12/1
|
PRJNA918957 | |
SRR23250316
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250317
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250318
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250319
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250320
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250321
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250322
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250323
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250324
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250325
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250326
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250327
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250328
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250329
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250330
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250331
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250332
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250333
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250334
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250335
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250336
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250337
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250338
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250339
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250340
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250341
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250342
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250343
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250344
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250345
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250350
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 | |
SRR23250351
OTHER |
ILLUMINA
NextSeq 500 |
France
|
2011
|
PRJNA918957 |
Amplicon Information
251 recordsAmplicon sequencing data associated with Curculionidae family
Run | Classification | Host | Platform | Location | Environment |
---|---|---|---|---|---|
SRR27416599
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416598
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416597
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416596
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416595
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416593
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416592
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416591
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416590
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416588
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416587
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416586
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416585
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416584
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416669
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416668
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416667
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416666
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416664
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416663
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416662
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416661
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416660
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416659
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416658
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416657
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416656
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416655
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416652
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416651
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416650
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416538
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416539
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416540
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416541
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416543
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416544
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416649
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416648
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416647
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416646
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416645
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416644
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416610
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416609
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416608
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416607
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416606
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416605
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416604
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416603
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416602
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416601
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416581
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416729
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416728
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416727
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416724
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416723
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416722
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416721
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416720
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416719
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416718
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416717
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416716
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416715
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416583
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416582
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416730
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416580
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416579
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416563
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416562
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416561
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416560
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416559
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416558
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416557
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416556
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416555
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416554
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416552
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416551
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416550
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416549
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416548
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR13441155
AMPLICON |
16S
|
-
|
Canada
49.81 N 97.13 W |
ENVO:01000219
laboratory insect colonies |
|
SRR13441154
AMPLICON |
16S
|
-
|
Canada
49.81 N 97.13 W |
ENVO:01000219
laboratory insect colonies |
|
SRR13441153
AMPLICON |
16S
|
-
|
Canada
49.81 N 97.13 W |
ENVO:01000219
laboratory insect colonies |
|
SRR13441152
AMPLICON |
16S
|
-
|
Canada
49.81 N 97.13 W |
ENVO:01000219
laboratory insect colonies |
|
SRR13441151
AMPLICON |
16S
|
-
|
Canada
49.81 N 97.13 W |
ENVO:01000219
laboratory insect colonies |
|
SRR11607997
AMPLICON |
16S
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect microbiome
Scolytinae |
|
SRR11788129
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788130
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788131
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788132
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788133
AMPLICON |
ITS
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788134
AMPLICON |
ITS
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788135
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788136
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788137
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788138
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788139
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788140
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788141
AMPLICON |
ITS
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788142
AMPLICON |
ITS
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788143
AMPLICON |
ITS
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788144
AMPLICON |
ITS
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788145
AMPLICON |
ITS
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788146
AMPLICON |
ITS
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788147
AMPLICON |
ITS
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788148
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788149
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788150
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788151
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788152
AMPLICON |
ITS
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788153
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788154
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788155
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788156
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788157
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788158
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788159
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788160
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788161
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788162
AMPLICON |
ITS
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788163
AMPLICON |
ITS
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect mycobiome
Scolytinae |
|
SRR11788164
AMPLICON |
ITS
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect mycobiome
Scolytinae |
|
SRR11607962
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607963
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607964
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607965
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607966
AMPLICON |
16S
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect microbiome
Scolytinae |
|
SRR11607967
AMPLICON |
16S
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect microbiome
Scolytinae |
|
SRR11607968
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607969
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607970
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607971
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607972
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607973
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607974
AMPLICON |
16S
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect microbiome
Scolytinae |
|
SRR11607975
AMPLICON |
16S
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect microbiome
Scolytinae |
|
SRR11607976
AMPLICON |
16S
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect microbiome
Scolytinae |
|
SRR11607977
AMPLICON |
16S
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect microbiome
Scolytinae |
|
SRR11607978
AMPLICON |
16S
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect microbiome
Scolytinae |
|
SRR11607979
AMPLICON |
16S
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect microbiome
Scolytinae |
|
SRR11607980
AMPLICON |
16S
|
-
|
Czech Republic
50.120 N 15.438 E |
Forest insect microbiome
Scolytinae |
|
SRR11607981
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607982
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607983
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607984
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607985
AMPLICON |
16S
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect microbiome
Scolytinae |
|
SRR11607986
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607987
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607988
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607989
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607990
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607991
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607992
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607993
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607994
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607995
AMPLICON |
16S
|
-
|
Czech Republic
49.173 N 16.317 E |
Forest insect microbiome
Scolytinae |
|
SRR11607996
AMPLICON |
16S
|
-
|
Czech Republic
49.713 N 18.045 E |
Forest insect microbiome
Scolytinae |
|
SRR27416685
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416683
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416741
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416740
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416737
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416726
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416725
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416714
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416713
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416712
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416711
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416710
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416709
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416708
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416707
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416706
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416705
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416704
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416703
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416702
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416701
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416700
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416699
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416698
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416697
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416696
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416695
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416694
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416692
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416691
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416690
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416689
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416688
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416687
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416686
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416684
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416665
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416654
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416643
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416640
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416629
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416625
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416624
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416623
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416622
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416621
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416620
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416618
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416600
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416575
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416564
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416553
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416542
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416682
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416681
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416680
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416679
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416678
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416677
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416676
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416675
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416674
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416673
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416672
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416671
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416567
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416566
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416565
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416642
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416641
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416739
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416639
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416638
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416637
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416636
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416635
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416634
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416633
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416632
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416631
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416630
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416573
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416572
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416571
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416570
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416569
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|
|
SRR27416568
AMPLICON |
16S
|
-
|
Germany
50.907861 N 11.658028 E |
-
|