SRR14139294 - Cyrtotrachelus buqueti

Basic Information

Run: SRR14139294

Assay Type: WGS

Bioproject: PRJNA719486

Biosample: SAMN18612541

Bytes: 5007378146

Center Name: LESHAN NORMAL UNIVERSITY

Sequencing Information

Instrument: HiSeq X Ten

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: China

Continent: Asia

Location Name: China: Leshan

Latitude/Longitude: 29.38 N 103.30 E

Sample Information

Host: Cyrtotrachelus buqueti

Isolation: Leshan

Biosample Model: Metagenome or environmental

Collection Date: 2019-07-15

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Klebsiella electrica
RISB0193
Recilia dorsalis
Order: Hemiptera
nitrogen-fixing bacterium, R. electrica has all the nitrogen fixation genes and colonizes the gut lumen of leafhoppers
42.56%
49.9
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
22.57%
41.1
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
22.57%
39.5
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
22.57%
37.8
Stenotrophomonas sp. 59
RISB0325
Pharaxonotha floridana
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.11%
20.1
Pantoea sp. CCBC3-3-1
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
0.02%
20.0
Pantoea sp. At-9b
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
0.01%
20.0
Serratia sp. UGAL515B_01
RISB0308
Rhopalotria slossonae
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.01%
20.0
Stenotrophomonas sp. 57
RISB0325
Pharaxonotha floridana
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.00%
20.0
Pantoea sp. Nvir
RISB0736
Psylliodes chrysocephala
Order: Coleoptera
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
0.00%
20.0
Serratia sp. FS14
RISB0308
Rhopalotria slossonae
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.00%
20.0
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.00%
20.0
Staphylococcus gallinarum
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.00%
20.0
Serratia liquefaciens
RISB1624
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
19.8
Pseudomonas sp. BT-42-2
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
19.8
Pseudomonas sp. Marseille-Q3773
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.00%
19.8
Rahnella aquatilis
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.00%
19.8
Acinetobacter sp. MYb10
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.00%
19.7
Pseudomonas fulva
RISB1510
Hypothenemus hampei
Order: Coleoptera
Antibiotic-treated larvae showed lower caffeine-degrading activity and increased mortality. These deficients were recovered by inoculation of the caffeine-degrading symbiont. A caffeine-degrading gene was detected from the symbiont
0.00%
19.6
Enterobacter cloacae
RISB1428
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
2.59%
19.5
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.00%
19.3
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.00%
18.8
Enterobacter asburiae
RISB1150
Plodia interpunctella
Order: Coleoptera
damaged polyethylene (PE) films
3.01%
18.6
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.87%
18.6
Raoultella sp. DY2415
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.18%
18.5
Enterobacter sp. JBIWA003
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.15%
18.5
Stenotrophomonas sp. 59
RISB2228
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.11%
18.5
Candidatus Sodalis pierantonius
RISB2035
Sitophilus oryzae
Order: Coleoptera
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
0.00%
18.4
Raoultella sp. X13
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.06%
18.4
Raoultella sp. HC6
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.05%
18.4
Sphingobacterium sp. DR205
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.00%
18.3
Klebsiella oxytoca
RISB1506
Cleonus trivittatus
Order: Coleoptera
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
0.08%
18.3
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.24%
18.1
Sodalis praecaptivus
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
0.00%
18.0
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.24%
18.0
Citrobacter freundii complex sp. CFNIH2
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.00%
17.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.03%
17.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.00%
17.7
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.11%
17.7
Sodalis glossinidius
RISB2588
Sitophilus zeamais
Order: Coleoptera
maintains and expresses inv/spa genes encoding a type III secretion system homologous to that used for invasion by bacterial pathogens
0.00%
17.7
Bacillus sp. FJAT-52991
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
0.00%
17.6
Bacillus subtilis
RISB0494
Sitophilus oryzae
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.00%
17.6
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.11%
17.5
Staphylococcus gallinarum
RISB0946
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
0.00%
17.4
Rahnella aquatilis
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.00%
17.2
Acinetobacter sp. MYb10
RISB0706
Curculio chinensis
Order: Coleoptera
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
0.00%
17.1
Rahnella aquatilis
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.00%
17.1
Paludibacter propionicigenes
RISB2055
Odontotaenius disjunctus
Order: Coleoptera
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
0.00%
16.8
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.03%
16.8
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.03%
16.8
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
1.38%
16.7
Leuconostoc sp. LN180020
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.29%
16.7
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.00%
16.6
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
0.11%
16.6
Leuconostoc sp. MTCC 10508
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.04%
16.5
Delftia sp. Cs1-4
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.04%
16.5
Delftia sp. DS1230
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.01%
16.4
Kosakonia sp. MUSA4
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
16.4
Acinetobacter sp. MYb10
RISB0804
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-11 oxidation pathway
0.00%
16.4
Leuconostoc sp. C2
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.00%
16.4
Delftia sp. UGAL515B_04
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.00%
16.4
Kosakonia sp. BYX6
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.00%
16.4
Erwinia sp. HDF1-3R
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.00%
16.4
Bacillus sp. FJAT-52991
RISB0805
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-8 oxidation pathway
0.00%
16.4
Paenibacillus sp. KACC 21273
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.00%
16.4
Paludibacter propionicigenes
RISB2056
Odontotaenius disjunctus
Order: Coleoptera
plays an important role in nitrogen fixation
0.00%
15.9
Exiguobacterium sp. 9-2
RISB1152
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.00%
15.4
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
15.2
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
15.2
Sphingobium
RISB1837
Dendroctonus valens
Order: Coleoptera
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
0.00%
14.0
Spiroplasma
RISB0343
Harmonia axyridis
Order: Coleoptera
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont
0.00%
13.5
Wolbachia
RISB1452
Octodonta nipae
Order: Coleoptera
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
0.03%
13.2
Wolbachia
RISB2107
Sitophilus zeamais
Order: Coleoptera
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
0.03%
12.4
Spiroplasma
RISB1483
Brachinus elongatulus
Order: Coleoptera
may manipulate host reproduction (e.g., cause male-killing) or provide resistance to nematodes and/or parasitoid wasps
0.00%
12.4
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.10%
12.1
Wolbachia
RISB1282
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
0.03%
11.7
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.00%
11.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.01%
11.3
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.00%
11.3
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.02%
11.0
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.65%
10.9
Trabulsiella
RISB1685
Melolontha hippocastani
Order: Coleoptera
Involved in cellulose degradation
0.01%
10.7
Spiroplasma
RISB0250
Tenebrio molitor
Order: Coleoptera
associated with PE biodegradation
0.00%
10.7
Turicibacter
RISB0451
Odontotaenius disjunctus
Order: Coleoptera
degrading  ellulose and xylan
0.00%
10.6
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.50%
10.5
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.00%
10.4
Diaphorobacter
RISB1062
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
10.2
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.87%
10.2
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.01%
10.0
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Candidatus Hamiltonella defensa
RISB1049
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.00%
10.0
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.00%
10.0
Gilliamella apicola
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.00%
10.0
Microbacterium oleivorans
RISB2194
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.00%
10.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.00%
9.8
Candidatus Hamiltonella defensa
RISB1296
Sitobion miscanthi
Order: Hemiptera
Increase the reproductive capacity of wheat aphids, increase the number of offspring and reduce the age of first breeding, suppressed the salicylic acid (SA)- and jasmonic acid (JA)-related defense pathways and SA/JA accumulation
0.00%
9.6
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
9.2
Clostridium sp. 'deep sea'
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.00%
9.2
Candidatus Hamiltonella defensa
RISB0630
Acyrthosiphon pisum
Order: Hemiptera
In response to ladybirds, symbiont-infected pea aphids exhibited proportionately fewer evasive defences (dropping and walking away) than non-infected (cured) pea aphids, but more frequent aggressive kicking
0.00%
9.1
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.01%
9.0
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.00%
9.0
Weissella cibaria
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.00%
8.8
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.00%
8.8
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
0.00%
8.7
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.00%
8.4
Lactobacillus sp. CBA3606
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.00%
8.4
Leucobacter aridicollis
RISB0771
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
8.3
Paenibacillus sp. KACC 21273
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Candidatus Profftella armatura
RISB2147
Diaphorina citri
Order: Hemiptera
a defensive symbiont presumably of an obligate nature, which encoded horizontally acquired genes for synthesizing a novel polyketide toxin, diaphorin
0.00%
8.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.01%
8.0
Weissella cibaria
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.00%
7.7
Candidatus Profftella armatura
RISB2005
Diaphorina citri
Order: Hemiptera
produce proteins involved in polyketide biosynthesis,which were up-regulated in CLas(+) insects (associated with citrus greening disease)
0.00%
7.7
Sphingobacterium faecium
RISB1226
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.00%
7.7
Exiguobacterium sp. 9-2
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
7.7
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.01%
7.5
Comamonas terrigena
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.00%
7.5
Psychrobacter sp. P11F6
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.00%
7.4
Candidatus Profftella armatura
RISB2146
Diaphorina citri
Order: Hemiptera
encoded horizontally acquired genes for synthesizing a novel polyketide toxin, providing defense against natural enemies
0.00%
7.4
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
1.28%
7.3
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.00%
7.2
Proteus sp. NMG38-2
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.00%
7.1
Apilactobacillus kunkeei
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.00%
7.1
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.00%
7.0
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.03%
6.9
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.00%
6.8
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
0.87%
6.7
Corynebacterium sp. SCR221107
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.00%
6.7
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.01%
6.6
Frischella perrara
RISB2028
Diceroprocta semicincta
Order: Hemiptera
causes the formation of a scab-like structure on the gut epithelium of its host
0.00%
6.6
Xenorhabdus bovienii
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.00%
6.5
Sphingobacterium faecium
RISB1400
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.00%
6.3
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
1.28%
6.3
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.03%
6.2
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.00%
6.1
Candidatus Riesia pediculicola
RISB2452
Pediculus humanus humanus
Order: Phthiraptera
supplement body lice nutritionally deficient blood diet
0.00%
6.1
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.00%
6.0
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.00%
6.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.01%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.01%
5.8
Cedecea lapagei
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.03%
5.8
Providencia sp. R33
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
5.7
Providencia sp. PROV252
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
5.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.01%
5.7
Erwinia sp. HDF1-3R
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.00%
5.6
Chryseobacterium sp. StRB126
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
5.6
Chryseobacterium sp. G0162
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.01%
5.4
Comamonas testosteroni
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.09%
5.4
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.36%
5.4
Bombilactobacillus bombi
RISB0617
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.00%
5.3
Arsenophonus nasoniae
RISB0428
Nasonia vitripennis
Order: Hymenoptera
male killing
0.00%
5.2
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.06%
5.1
Cedecea lapagei
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.03%
5.0
Erwinia amylovora
RISB0403
Anaphes nitens
Order: Hymenoptera
None
0.01%
5.0
Trabulsiella
RISB2201
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
5.0
Pseudocitrobacter corydidari
RISB0696
Corydidarum magnifica
Order: Blattodea
None
0.01%
5.0
Agrobacterium tumefaciens
RISB0650
Melanaphis bambusae
Order: Hemiptera
None
0.01%
5.0
Bifidobacterium
RISB0174
Apis mellifera
Order: Hymenoptera
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
0.01%
5.0
Gilliamella apicola
RISB1945
Apis cerana
Order: Hymenoptera
None
0.00%
5.0
Lactobacillus apis
RISB1556
Apis florea
Order: Hymenoptera
None
0.00%
5.0
Arsenophonus nasoniae
RISB0366
Pachycrepoideus vindemmiae
Order: Hymenoptera
None
0.00%
5.0
Yersinia massiliensis
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.00%
5.0
Candidatus Legionella polyplacis
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.00%
5.0
Cupriavidus pauculus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.00%
5.0
Bosea sp. ANAM02
RISB1702
Phlebotomus papatasi
Order: Diptera
None
0.00%
5.0
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.00%
5.0
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.00%
5.0
Candidatus Regiella
RISB1370
Sitobion avenae
Order: Hemiptera
Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
0.00%
5.0
Francisella
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.00%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.00%
4.9
Candidatus Regiella
RISB1819
Sitobion avenae
Order: Hemiptera
In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions.
0.00%
4.7
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.00%
4.5
Candidatus Regiella
RISB1363
Sitobion avenae
Order: Hemiptera
R. insecticola-infected aphids were more predated by the ladybird Hippodamia variegata irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants
0.00%
4.2
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.02%
3.8
Caballeronia
RISB0399
Riptortus pedestris
Order: Hemiptera
in laboratory conditions, C. jiangsuensis significantly enhanced the development, body size, and reproductive potentials of R. pedestris, compared to individuals with no symbiotic bacteria.
0.00%
3.8
Photorhabdus
RISB2532
Manduca sexta
Order: Lepidoptera
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
0.00%
3.7
Symbiopectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.27%
3.6
Bifidobacterium
RISB0616
Spodoptera frugiperda
Order: Lepidoptera
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
0.01%
3.5
Amycolatopsis
RISB0483
Trachymyrmex smithi
Order: Hymenoptera
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
0.00%
3.3
Arthrobacter
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
3.3
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.00%
3.1
Yokenella
RISB1492
Nezara viridula
Order: Hemiptera
help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses by degrading isoflavonoids and deactivate soybean protease inhibitors
0.02%
3.1
Amycolatopsis
RISB0199
Trachymyrmex
Order: Hymenoptera
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
0.00%
3.1
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.00%
3.1
Ignatzschineria
RISB0562
Chrysomya megacephala
Order: Diptera
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
0.00%
3.0
Caballeronia
RISB0276
Riptortus pedestris
Order: Hemiptera
Gut symbiont resulted in increase in the body size and weight of male adults;increased dispersal capacity of male adults especially for flight
0.00%
2.8
Photorhabdus
RISB2573
Manduca sexta
Order: Lepidoptera
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
0.00%
2.8
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.00%
2.7
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.00%
2.6
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.01%
2.6
Caballeronia
RISB0530
Anasa tristis
Order: Hemiptera
the symbiont Caballeronia prevents successful, long-term establishment of phytopathogenic Serratia marcescens in the squash bug
0.00%
2.5
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.41%
2.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.10%
2.4
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.10%
2.2
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.00%
2.1
Coprococcus
RISB0092
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.00%
2.1
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.41%
2.1
Sphingomonas
RISB0420
Aphis gossypii
Order: Hemiptera
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
0.00%
2.0
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.02%
2.0
Arthrobacter
RISB1084
Hermetia illucens
Order: Diptera
Arthrobacter AK19 doubled the growth rate of larvae and increased the waste conversion by 25-30%
0.00%
1.9
Snodgrassella
RISB1423
Bombus spp.
Order: Hymenoptera
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
0.00%
1.9
Sphingomonas
RISB1307
Aphis gossypii
Order: Hemiptera
have been previously described in associations with phloem-feeding insects, in low abundances
0.00%
1.9
Arthrobacter
RISB1753
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.00%
1.8
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.50%
1.8
Lachnospira
RISB2110
Blattella germanica
Order: Blattodea
Hydrolyze polysaccharide; assist digestion; synthesize acetate, propionate, and butyrate
0.00%
1.8
Sphingomonas
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.00%
1.6
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.41%
1.6
Diaphorobacter
RISB2150
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.00%
1.3
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.00%
1.3
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.00%
1.3
Photorhabdus
RISB0532
Drosophila melanogaster
Order: Diptera
produces toxin complex (Tc) toxins as major virulence factors
0.00%
1.2
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.07%
1.1
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.00%
1.1
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.00%
0.8
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Sphingobium
RISB1880
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
0.3
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
0.3
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
0.3
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.17%
0.2
Bifidobacterium
RISB1944
Apis cerana
Order: Hymenoptera
None
0.01%
0.0
Gibbsiella
RISB1320
Vespa mandarinia
Order: Hymenoptera
None
0.01%
0.0
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.01%
0.0
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.00%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.00%
0.0
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Snodgrassella
RISB1947
Apis cerana
Order: Hymenoptera
None
0.00%
0.0
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.00%
0.0
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.00%
0.0
Lonsdalea
RISB1321
Vespa mandarinia
Order: Hymenoptera
None
0.00%
0.0
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
0.00%
0.0
Candidatus Vallotia
RISB1665
Adelgidae
Order: Hemiptera
None
0.00%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0
Fructobacillus
RISB0638
Formica
Order: Hymenoptera
None
0.00%
0.0
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.00%
0.0
Geobacillus
RISB1251
Potamobates horvathi
Order: Hemiptera
None
0.00%
0.0
Candidatus Arthromitus
RISB2613
Multiple species
Order: None
None
0.00%
0.0
Selenomonas
RISB1305
Aphis gossypii
Order: Hemiptera
None
0.00%
0.0
Candidatus Phytoplasma
RISB1620
Cacopsylla pyricola
Order: Hemiptera
None
0.00%
0.0
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.00%
0.0
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.00%
0.0
Sediminibacterium
RISB0244
Spodoptera frugiperda
Order: Lepidoptera
None
0.00%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR14139294
4.7 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table