Functional Symbionts
758 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Enterobacter
Pseudomonadota |
Ceratitis capitataDiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Klebsiella
Pseudomonadota |
Zeugodacus cucurbitaeDiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Klebsiella
Pseudomonadota |
Ceratitis capitataDiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Klebsiella oxytoca
Pseudomonadota |
Drosophila suzukiiDiptera |
Bacteria
|
Extracellular
|
promotes host fitness in special ecological niche by affecting sugar metabolism in Drosophila suzukii |
2023 |
||
Pantoea sp. Pa-EAmG
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. Pa-EAmG
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. Pa-EAmG
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. EA-12
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. EABMAA-21
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Pantoea
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Pantoea
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Serratia sp. Se-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia bockelmannii
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia bockelmannii
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |