Functional Symbionts
758 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Klebsiella electrica
Pseudomonadota |
Recilia dorsalisHemiptera |
Bacteria
|
nitrogen-fixing bacterium, R. electrica has all the nitrogen fixation genes and colonizes the gut lumen of leafhoppers |
2023 |
|||
Arsenophonus
Pseudomonadota |
Aphis gossypiiHemiptera |
Bacteria
|
Arsenophonus ameliorated growth performance of A. gossypii on an amino acid-deficient diet |
2023 |
|||
Serratia plymuthica
Pseudomonadota |
Belgica antarcticaDiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Serratia fonticola
Pseudomonadota |
Belgica antarcticaDiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Buchnera aphidicola
Pseudomonadota |
Myzus persicaeHemiptera |
Bacteria
|
Intracellular
|
2023 |
|||
Buchnera aphidicola
Pseudomonadota |
Acyrthosiphon pisumHemiptera |
Bacteria
|
Intracellular
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival |
2023 |
||
Enterobacter
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Extracellular
|
2023 |
|||
Providencia
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Extracellular
|
2023 |
|||
Cronobacter
Pseudomonadota |
Tenebrio molitorColeoptera |
Bacteria
|
Extracellular
|
may be indirectly involved in the digestion of PE |
2023 |
||
Sodalis pierantonius
Pseudomonadota |
Sitophilus oryzaeColeoptera |
Bacteria
|
may infulence immunity, metabolism, metal control, apoptosis, and bacterial stress response |
2023 |
|||
Candidatus Blochmanniella pennsylvanica
Pseudomonadota |
Camponotus pennalicusHymenoptera |
Bacteria
|
2023 |
||||
Klebsiella
Pseudomonadota |
Synchalara rhombotaLepidoptera |
Bacteria
|
Extracellular
|
2023 |
|||
Pantoea
Pseudomonadota |
Recilia dorsalisHemiptera |
Bacteria
|
Extracellular
|
play a crucial role in the recycling of nitrogenous waste |
2023 |
||
Enterobacteriaceae
Pseudomonadota |
Bactrocera tryoniDiptera |
Bacteria
|
Extracellular
|
volatile organic compounds (MVOCs) emitted by Enterobacteriaceae can attracting virgin females |
2023 |
||
Pantoea 1C4
Pseudomonadota |
Xylosandrus crassiusculusColeoptera |
Bacteria
|
Extracellular
|
plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing antibiotics. |
2023 |
||
Pantoea 1C4
Pseudomonadota |
Xylosandrus germanusColeoptera |
Bacteria
|
Extracellular
|
plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing antibiotics. |
2023 |
||
Candidatus Hamiltonella
Pseudomonadota |
Aphis gossypiiHemiptera |
Bacteria
|
Extracellular
|
Hamiltonella retarded the growth and development of cotton aphids accompanied by the downregulation of genes related to energy synthesis and nutrient metabolism |
2023 |
||
Buchnera aphidicola
Pseudomonadota |
Helicoverpa armigeraLepidoptera |
Bacteria
|
Intracellular
|
2023 |
|||
Serratia symbiotica
Pseudomonadota |
Helicoverpa armigeraLepidoptera |
Bacteria
|
Intracellular
|
2023 |
|||
Enterobacter
Pseudomonadota |
Zeugodacus cucurbitaeDiptera |
Bacteria
|
Extracellular
|
2023 |