Functional Symbionts
758 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Serratia bockelmannii
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. PF2-63
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. PF-27
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Serratia
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Serratia
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Buchnera aphidicola
Pseudomonadota |
Acyrthosiphon pisumHemiptera |
Bacteria
|
Extracellular
|
can synthesize and provide some essential nutrients for its host |
2023 |
||
Candidatus Regiella insecticola
Pseudomonadota |
Sitobion avenaeHemiptera |
Bacteria
|
Intracellular
|
Presence of the symbiont also reduced parasitoid Aphidius gifuensis parasitic success, increased the wasp development time and decreased its emergence weight |
2023 |
||
Serratia marcescens
Pseudomonadota |
Pagiophloeus tsushimanusColeoptera |
Bacteria
|
Extracellular
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol |
2023 |
||
Arsenophonus nasoniae
Pseudomonadota |
Pachycrepoideus vindemmiaeHymenoptera |
Bacteria
|
2023 |
||||
Arsenophonus sp.
Pseudomonadota |
Polyommatus bellargusLepidoptera |
Bacteria
|
2023 |
||||
Wigglesworthia glossinidia
Pseudomonadota |
Glossina morsitansDiptera |
Bacteria
|
Intracellular
|
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity |
2023 |
||
Klebsiella
Pseudomonadota |
Tenebrio molitorColeoptera |
Bacteria
|
Extracellular
|
ability to fix nitrogen from the atmosphere |
2023 |
||
Pantoea agglomerans
Pseudomonadota |
Frankliniella occidentalisThysanoptera |
Bacteria
|
Extracellular
|
gut symbionts are required for their development |
2023 |
||
Pantoea agglomerans
Pseudomonadota |
Frankliniella intonsaThysanoptera |
Bacteria
|
Extracellular
|
gut symbionts are required for their development |
2023 |
||
Pantoea dispersa
Pseudomonadota |
Thrips tabaciThysanoptera |
Bacteria
|
Extracellular
|
gut symbionts are required for their development |
2023 |
||
Candidatus Pantoea bathycoeliae
Pseudomonadota |
Bathycoelia distinctaHemiptera |
Bacteria
|
Extracellular
|
provide nutrients that cannot be obtained from plant sap food sources |
2023 |