Functional Symbionts
2417 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Bradyrhizobium
Pseudomonadota |
Coccinella septempunctataColeoptera |
Bacteria
|
Extracellular
|
be commonly found in plant roots and they all have nitrogen fixation abilities |
2024 |
||
Burkholderia
Pseudomonadota |
Coccinella septempunctataColeoptera |
Bacteria
|
Extracellular
|
be commonly found in plant roots and they all have nitrogen fixation abilities,and may be able to trigger the expression of genes associated with disease resistance |
2024 |
||
Methylovirgula
Pseudomonadota |
Coccinella septempunctataColeoptera |
Bacteria
|
Extracellular
|
Methylovirgula is ubiquitous in soil and has been found in many soil samples as a major species producing carbon activity, scholars have found that the microorganism has the highest content in mixed peat swamp forest systems and has the effect of harnessing and reducing methane |
2024 |
||
Rhodobacter
Pseudomonadota |
Coccinella septempunctataColeoptera |
Bacteria
|
Extracellular
|
Rhodanobacter genera can utilize various carbon sources, including cellobiose. In larvae of longhorned beetles that feed on plants rich in carbohydrates (cellulose and hemicellulose) and lignin, Rhodanobacter can help the larvae digest more carbon nutrients through carbon sequestration |
2024 |
||
Stenotrophomonas maltophilia
Pseudomonadota |
Tenebrio molitorColeoptera |
Bacteria
|
Extracellular
|
correlated with polyvinyl chloride PVC degradation |
2024 |
||
Acinetobacter
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Extracellular
|
Acinetobacter can effectively degrade cellulose and harmful substances such as polystyrene and phenol.It can help the short-winged BPH to improve its detoxification ability in harsh environments and adapt to environmental changes at any time. |
2024 |
||
Serratia
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Extracellular
|
Serratia may be related to the virulence variation of BPHs. It is speculated that the rich Serratia in the gut of the long-winged BPH can help it adapt to the harsh environment. |
2024 |
||
Tessaratoma javanicaHemiptera |
Bacteria
|
Extracellular
|
2024 |
||||
Anthophora bomboidesHymenoptera |
Bacteria and Fungi
|
Intracellular
|
provide key fitness advantages through larval development and diapause |
2024 |
|||
Acinetobacter
Pseudomonadota |
Oligia apameoidesLepidoptera |
Bacteria
|
2024 |
||||
Buchnera
Pseudomonadota |
Pseudoregma bambucicolaHemiptera |
Bacteria
|
supply nutrient |
2024 |
|||
Buchnera
Pseudomonadota |
Purohita taiwanensisHemiptera |
Bacteria
|
supply nutrient |
2024 |
|||
Buchnera
Pseudomonadota |
Takecallis taiwanaHemiptera |
Bacteria
|
supply nutrient |
2024 |
|||
Buchnera
Pseudomonadota |
Ceratovacuna keduensisHemiptera |
Bacteria
|
supply nutrient |
2024 |
|||
Buchnera
Pseudomonadota |
Antonina pretiosaHemiptera |
Bacteria
|
supply nutrient |
2024 |
|||
Buchnera
Pseudomonadota |
Reticulitermes flavicepsBlattodea |
Bacteria
|
supply nutrient |
2024 |
|||
Candidatus Vidania
Pseudomonadota |
Pseudoregma bambucicolaHemiptera |
Bacteria
|
2024 |
||||
Candidatus Vidania
Pseudomonadota |
Purohita taiwanensisHemiptera |
Bacteria
|
2024 |
||||
Candidatus Vidania
Pseudomonadota |
Tropidocephala brunnipennisHemiptera |
Bacteria
|
2024 |
||||
Candidatus Vidania
Pseudomonadota |
Antonina pretiosaHemiptera |
Bacteria
|
2024 |