SRR12668518 - Tribolium castaneum

Basic Information

Run: SRR12668518

Assay Type: WGS

Bioproject: PRJNA663749

Biosample: SAMN16178313

Bytes: 49572859

Center Name: NATIONAL CENTER FOR BIOLOGICAL SCIENCES

Sequencing Information

Instrument: Illumina MiSeq

Library Layout: PAIRED

Library Selection: PCR

Platform: ILLUMINA

Geographic Information

Country: India

Continent: Asia

Location Name: India:Bangalore

Latitude/Longitude: 12.9716 N 77.5946 E

Sample Information

Host: Tribolium castaneum

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2017-08-12

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
3.14%
40.9
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
2.40%
38.8
Acinetobacter
RISB0993
Tribolium castaneum
Order: Coleoptera
may play a role in the larval gut for biodegradation of Polystyrene PS
1.02%
32.4
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
18.00%
21.8
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
2.40%
20.0
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
18.00%
19.9
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
2.40%
19.7
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
2.05%
17.1
Bacillus cereus
RISB1056
Oryctes rhinoceros
Order: Coleoptera
provide symbiotic digestive functions to Oryctes
0.97%
16.9
Bacillus cereus
RISB1778
Lissorhoptrus oryzophilus
Order: Coleoptera
might be promising paratransgenesis candidates
0.97%
16.9
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.70%
16.1
Acinetobacter
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
1.02%
15.7
Acinetobacter
RISB1356
Callosobruchus maculatus
Order: Coleoptera
These bacterial phyla may allow the adults C. maculatus to survive on DDVP treated grains, thereby making it inappropriate to control the beetle populations in the field.
1.02%
14.4
Staphylococcus
RISB0946
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
2.05%
14.4
Lactococcus
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.10%
13.7
Sodalis
RISB2035
Sitophilus oryzae
Order: Coleoptera
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
0.22%
13.6
Lactococcus
RISB0116
Novius pumilus
Order: Coleoptera
were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects
0.10%
13.5
Sodalis
RISB2607
Sitophilus oryzae
Order: Coleoptera
induces the specific differentiation of the bacteriocytes, increases mitochondrial oxidative phosphorylation through the supply of pantothenic acid and riboflavin
0.22%
13.5
Sodalis
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
0.22%
13.2
Methylobacterium
RISB1440
Lutzomyia evansi
Order: Diptera
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
9.70%
13.0
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
1.01%
12.8
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
3.14%
12.5
Staphylococcus
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
2.05%
12.3
Lactococcus
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.10%
12.0
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.28%
11.6
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.47%
11.5
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.70%
10.7
Exiguobacterium
RISB1152
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.09%
10.5
Methylobacterium
RISB2053
Atractomorpha sinensis
Order: Orthoptera
associated with cellulolytic enzymes
9.70%
10.4
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.09%
10.1
Methylobacterium
RISB2340
Saturniidae
Order: Lepidoptera
Nitrogen fixation
9.70%
10.0
Serratia symbiotica
RISB0179
Acyrthosiphon pisum
Order: Hemiptera
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
0.09%
9.6
Enterobacter ludwigii
RISB1543
Helicoverpa zea
Order: Lepidoptera
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
0.45%
9.1
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
3.14%
9.0
Serratia symbiotica
RISB1333
Adelges tsugae
Order: Hemiptera
help to maintain aphid fitness during heat stress to varying degrees; the presence of facultative symbionts like S. symbiotica may protect the obligate symbiont Buchnera
0.09%
8.5
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
3.24%
8.2
Enterobacter ludwigii
RISB1223
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.45%
8.2
Enterobacter ludwigii
RISB1397
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.45%
6.8
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.70%
6.7
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.54%
5.5
Brevundimonas sp. Bb-A
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.32%
5.3
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.18%
5.2
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
2.57%
4.6
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
2.57%
4.2
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
2.57%
3.8
Lactobacillus
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.18%
3.5
Lactobacillus
RISB0715
Spodoptera frugiperda
Order: Lepidoptera
Have the function of nutrient absorption, energy metabolism, the plant’s secondary metabolites degradation, insect immunity regulation, and so on
0.18%
3.1
Exiguobacterium
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.09%
2.8
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
1.01%
2.7
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.71%
2.0
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
1.01%
1.8
Brevibacterium
RISB0464
Acrida cinerea
Order: Orthoptera
correlated with the hemicellulose digestibility
0.11%
1.1
Exiguobacterium
RISB0582
Aleurodicus rugioperculatus
Order: Hemiptera
may indirectly affect whitefly oviposition
0.09%
0.9
Brevibacterium
RISB2359
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.11%
0.9
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
0.19%
0.2
Brevibacterium
RISB0897
Myzus persicae
Order: Hemiptera
None
0.11%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR12668518
47.3 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table