Ceratitis capitata
Mediterranean fruit fly or medfly
Ceratitis capitata is a yellow and brown fruit pest that originates from sub-Saharan Africa. C. capitata has no near relatives in the Western Hemisphere and is considered to be one of the most destructive fruit pests in the world. There have been occasional medfly infestations in the states of California, Florida, and Texas that required extensive eradication efforts to prevent the fly from establishing itself in the US.
Host Genome
Scaffold| Genome ID | Level | BUSCO Assessment |
|---|---|---|
| GCA_000347755.4 | Scaffold |
C:99.4%[S:99.3%,D:0.1%],F:0.2%,M:0.4%,n:1367
|
Download Genome Files
Related Symbionts
16 recordsSymbiont records associated with Ceratitis capitata
| Classification | Function | Function Tags | Reference | |
|---|---|---|---|---|
|
Klebsiella oxytoca
Pseudomonadota |
Bacteria
|
Klebsiella oxytoca (as part of a probiotic consortium) significantly influences the intestinal microbiota structure, leading to improved functional p… |
carbohydrates enzymes
|
|
|
Lactococcus lactis
Bacillota |
Bacteria
|
Lactococcus lactis (as part of a probiotic consortium) significantly influences the intestinal microbiota structure, leading to improved functional p… |
carbohydrates enzymes
|
|
|
Enterobacter
Pseudomonadota |
Bacteria
|
Enterobacter (as part of a probiotic consortium) significantly influences the intestinal microbiota structure, leading to improved functional potenti… |
carbohydrates enzymes
|
|
|
Enterobacter sp. AA26
Pseudomonadota |
Bacteria
|
Enterobacter sp. AA26 dry biomass can fully replace brewer’s yeast as a protein source in the medfly larval diet without negatively affecting the pro… |
amino acid provision
|
|
|
Bacteria
|
Gut bacteria (Amplicon data) have a possible involvement in determining resistance to insecticides in Ceratitis capitata. |
pesticide metabolization
|
||
|
Enterobacter sp. AA26
Pseudomonadota |
Bacteria
|
Enterobacter sp. AA26 showed positive effects on rearing efficiency when used as larval probiotics for the medfly. |
probiotic
|
|
|
Asaia
Pseudomonadota |
Bacteria
|
Asaia has a possible involvement in determining resistance to insecticides in Ceratitis capitata. |
pesticide metabolization
|
|
|
Wolbachia
Pseudomonadota |
Bacteria
|
Wolbachia induces complete Cytoplasmic Incompatibility (CI) in the host. |
cytoplasmic incompatibility
|
|
|
Bacteria
|
- |
|||
|
Chroococcidiopsis
Cyanobacteriota |
Bacteria
|
- |
||
|
Enterobacter
Pseudomonadota |
Bacteria
|
- |
||
|
Bacteria
|
- |
|||
|
Klebsiella
Pseudomonadota |
Bacteria
|
- |
||
|
Klebsiella
Pseudomonadota |
Bacteria
|
- |
||
|
Propionibacterium
Actinomycetota |
Bacteria
|
- |
||
|
Providencia
Pseudomonadota |
Bacteria
|
- |
Metagenome Information
0 recordsMetagenome sequencing data associated with Ceratitis capitata
| Run | Platform | Location | Date | BioProject |
|---|---|---|---|---|
No metagenomes foundNo metagenome records associated with this host species. |
||||
Amplicon Information
12 recordsAmplicon sequencing data associated with Ceratitis capitata
| Run | Classification | Platform | Location | Environment |
|---|---|---|---|---|
|
SRR13179901
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13179902
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13179904
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180157
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180158
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180182
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180194
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180195
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180198
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180550
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13180621
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
|
SRR13181189
AMPLICON |
16S
|
-
|
Italy
45.1854 N 9.16222 E |
-
|
Related Articles
8 recordsResearch articles related to Ceratitis capitata
| Title | Authors | Journal | Year | DOI |
|---|---|---|---|---|
|
Haytham, H; Kamel, C; Wafa, D ... Ameur, C; Guerfali, MM
|
SCIENTIFIC REPORTS
|
2024
|
10.1038/s41598-023-50679-z | |
|
Mokhtar, NB; Catala-Oltra, M; Stathopoulou, P ... Tsiamis, G; Dembilio, O
|
FRONTIERS IN MICROBIOLOGY
|
2022
|
10.3389/fmicb.2022.919760 | |
|
Cappelli, A; Petrelli, D; Gasperi, G ... Damiani, C; Favia, G
|
Insects
|
2022
|
10.3390/insects13050474 | |
|
Comandatore, F; Damiani, C; Cappelli, A ... Bandi, C; Favia, G
|
MBIO
|
2021
|
10.1128/mbio.00106-21 | |
|
Azis, K; Zerva, I; Melidis, P ... Bourtzis, K; Ntougias, S
|
BMC BIOTECHNOLOGY
|
2019
|
10.1186/s12896-019-0584-9 | |
|
Kyritsis, GA; Augustinos, AA; Ntougias, S ... Bourtzis, K; Cáceres, C
|
BMC MICROBIOLOGY
|
2019
|
10.1186/s12866-019-1651-z | |
|
Malacrinò, A; Campolo, O; Medina, RF; Palmeri, V
|
PLOS ONE
|
2018
|
10.1371/journal.pone.0194131 | |
|
Zabalou, S; Riegler, M; Theodorakopoulou, M ... Savakis, C; Bourtzis, K
|
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
|
2004
|
10.1073/pnas.0403853101 |
Core Microbiome Composition
Core microbiome composition is derived from available metagenomic and amplicon sequencing data, calculated based on the relative abundance and coverage of symbionts across different samples. The representativeness of this analysis may vary depending on the number of available samples and should be considered as a reference guide. See calculation details in Help documentation