Functional Symbionts
90 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Pseudomonas
Pseudomonadota |
Osmia cornifronsHymenoptera |
Bacteria
|
Extracellular
|
this bacterium has been shown to contribute to the synthesis of a defensive toxin in the beetle, Paederus fuscipes, and promotes arginine metabolism under in vitro conditions |
2024 |
||
Pseudomonas fulva ZJU1
Pseudomonadota |
Bombyx moriLepidoptera |
Bacteria
|
Extracellular
|
Pseudomonas fulva ZJU1 can degrade and utilize the mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ) as the sole energy source, and after inoculation into nonspecialists, P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth |
2024 |
||
Pseudomonas
Pseudomonadota |
Bactrocera cucurbitaeDiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Pseudomonas sp. GCEP-1None1
Pseudomonadota |
Diatraea saccharalisLepidoptera |
Bacteria
|
Extracellular
|
associated with cellulose degradation |
2023 |
||
Pseudomonas sp
Pseudomonadota |
Plagiodera versicoloraColeoptera |
Bacteria
|
Pseudomonas sp. core bacteria can promote host infection by entomopathogenic fungus |
2023 |
|||
Pseudomonas syringae
Pseudomonadota |
Celatoblatta quinquemaculataBlattodea |
Bacteria
|
initiate crystallization of water |
2023 |
|||
Pseudomonas syringae
Pseudomonadota |
Hemideina maoriOrthoptera |
Bacteria
|
initiate crystallization of water |
2023 |
|||
Pseudomonas syringae
Pseudomonadota |
Sigaus australisOrthoptera |
Bacteria
|
initiate crystallization of water |
2023 |
|||
Pseudomonas fluorescens
Pseudomonadota |
Celatoblatta quinquemaculataBlattodea |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Pseudomonas fluorescens
Pseudomonadota |
Hemideina maoriOrthoptera |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Pseudomonas fluorescens
Pseudomonadota |
Sigaus australisOrthoptera |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Pseudomonas aeruginosa
Pseudomonadota |
Pagiophloeus tsushimanusColeoptera |
Bacteria
|
Extracellular
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol |
2023 |
||
Pseudomonas
Pseudomonadota |
Aphis gossypiiHemiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Pseudomonas
Pseudomonadota |
Anopheles sinensisDiptera |
Bacteria
|
Extracellular
|
Pseudomonas is the most prevalent microbiota in the Plasmodium-negative groups and protects mosquitoes from the invasion of malaria parasites.A low proportion of the Psuedomonas population of microbiome profiles in the hyperendemic areas, indicating that there might be some factors such as malaria parasites to disturb the balance of microbiota |
2023 |
||
Pseudomonas
Pseudomonadota |
Monochamus alternatusColeoptera |
Bacteria
|
Extracellular
|
show a strong inhibitory activity against entomopathogenic Beauveria bassiana by reducing the fungal conidial germination and growth rather than regulating host immunity |
2022 |
||
Pseudomonas
Pseudomonadota |
Aleurodicus rugioperculatusHemiptera |
Bacteria
|
Extracellular
|
may indirectly affect whitefly oviposition |
2022 |
||
Pseudomonas
Pseudomonadota |
Melanaphis bambusaeHemiptera |
Bacteria
|
2022 |
||||
Pseudomonas sp.
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Extracellular
|
Pseudomonas sp. composition and abundance correlated with BPH survivability |
2022 |
||
Candidatus Ishikawaella capsulata
Pseudomonadota |
Psylliodes chrysocephalaColeoptera |
Bacteria
|
Extracellular
|
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS) |
2022 |
||
Lymantria disparLepidoptera |
Bacteria
|
Extracellular
|
Abundance of genus Pseudomonas in D. superans larvae increased, but Serratia and Enterobacter decreased, and L. dispar larvae fed on aconitine-treated diet and nicotine-treated diet shared dominant bacteria Enterococcus (by 16S rRNA gene sequencing) |
2022 |