Functional Symbionts
60 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Chryseobacterium
Bacteroidota |
Aedes aegyptiDiptera |
Bacteria
|
Extracellular
|
2024 |
|||
Blattabacterium
Bacteroidota |
Supella longipalpaBlattodea |
Bacteria
|
Intracellular
|
Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations by reducing diversity |
2024 |
||
Blattabacterium cuenoti
Bacteroidota |
Blattella germanicaBlattodea |
Bacteria
|
Intracellular
|
obligate endosymbiont |
2024 |
||
Candidatus Walczuchella
Bacteroidota |
Icerya aegyptiacaHemiptera |
Bacteria
|
possessed several genes in essential amino acid biosynthesis and seemed to perform roles in providing nutrients to the host |
2024 |
|||
Blattabacterium cuenoti
Bacteroidota |
PanesthiinaeBlattodea |
Bacteria
|
Intracellular
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life |
2024 |
||
Candidatus Sulcia muelleri
Bacteroidota |
Karenia caelatataHemiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Candidatus Sulcia muelleri
Bacteroidota |
Tanna sp.Hemiptera |
Bacteria
|
Extracellular
|
2023 |
|||
Candidatus Sulcia
Bacteroidota |
Colladonus geminatusHemiptera |
Bacteria
|
Intracellular
|
produce essential amino acids lacking in the leafhoppers' phloem sap diet |
2023 |
||
Candidatus Sulcia
Bacteroidota |
Colladonus montanus reductusHemiptera |
Bacteria
|
Intracellular
|
produce essential amino acids lacking in the leafhoppers' phloem sap diet |
2023 |
||
Candidatus Sulcia
Bacteroidota |
Circulifer tenellusHemiptera |
Bacteria
|
Intracellular
|
produce essential amino acids lacking in the leafhoppers' phloem sap diet |
2023 |
||
Candidatus Sulcia
Bacteroidota |
Euscelidius variegatusHemiptera |
Bacteria
|
Intracellular
|
produce essential amino acids lacking in the leafhoppers' phloem sap diet |
2023 |
||
Shikimatogenerans bostrichidophilus
Bacteroidota |
BostrichidaeColeoptera |
Bacteria
|
encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles’ cuticle biosynthesis, sclerotisation, and melanisation. |
2023 |
|||
Sulcia muelleri
Bacteroidota |
Maiestas dorsalisHemiptera |
Bacteria
|
Intracellular
|
Sulcia is responsible for synthesizing eight essential amino acids (leucine, isoleucine, threonine, lysine, arginine, tryptophan, phenylalanine, and valine) |
2023 |
||
Blattabacterium
Bacteroidota |
Celatoblatta quinquemaculataBlattodea |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Blattabacterium cuenoti
Bacteroidota |
Cryptocercus punctulatusBlattodea |
Bacteria
|
Intracellular
|
collaborative arginine biosynthesis |
2022 |
||
Blattabacterium cuenoti
Bacteroidota |
Mastotermes darwiniensisBlattodea |
Bacteria
|
Intracellular
|
collaborative arginine biosynthesis |
2022 |
||
Apibacter
Bacteroidota |
Apis ceranaHymenoptera |
Bacteria
|
Extracellular
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host |
2022 |
||
Apibacter
Bacteroidota |
Apis ceranaHymenoptera |
Bacteria
|
Extracellular
|
2022 |
|||
Myroides
Bacteroidota |
Musca alticaDiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Chryseobacterium
Bacteroidota |
Melanaphis bambusaeHemiptera |
Bacteria
|
2022 |