Functional Symbionts
2442 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Candidatus Arsenophonus nilaparvatae
Pseudomonadota |
Nilaparvata lugensChina |
Bacteria
|
Intracellular
|
Candidatus Arsenophonus nilaparvatae (a facultative endosymbiont) has the potential role of synthesizing B vitamins for the host. |
2016 |
||
|
Arsenophonus nilaparvatae
Pseudomonadota |
Nilaparvata lugensChina |
Bacteria
|
2016 |
||||
|
Candidatus Regiella insecticola
Pseudomonadota |
Sitobion avenaeChina |
Bacteria
|
Extracellular
|
Candidatus Regiella insecticola infection in aphids led to increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles in plant-insect interactions. |
2016 |
||
|
Bacteria
|
Extracellular
|
2016 |
|||||
|
Burkholderia spp.
Pseudomonadota |
Bacteria
|
Extracellular
|
2016 |
||||
|
Bacillus cereus
Bacillota |
Bacteria
|
Bacillus cereus is involved in the degradation of acephate and uses acephate as a source of carbon and energy for growth. |
2016 |
||||
|
Enterobacter
Pseudomonadota |
Bacteria
|
Enterobacter is involved in the degradation of acephate and uses acephate as a source of carbon and energy for growth. |
2016 |
||||
|
Pantoea agglonierans
Pseudomonadota |
Bacteria
|
Pantoea agglonierans is involved in the degradation of acephate and uses acephate as a source of carbon and energy for growth. |
2016 |
||||
|
Wolbachia
Pseudomonadota |
Thrips palmiIndia |
Bacteria
|
Intracellular
|
2016 |
|||
|
Bacillus cereus
Bacillota |
Plutella xylostellaIndia |
Bacteria
|
Bacillus cereus is involved in the degradation of indoxacarb and could use indoxacarb for metabolism and growth. |
2016 |
|||
|
Blochmannia floridanus
Pseudomonadota |
Camponotus floridanusChina |
Bacteria
|
Intracellular
|
Blochmannia floridanus modulates immune gene expression, which may facilitate tolerance towards the endosymbionts and contribute to their transovarial transmission. |
2016 |
||
|
Burkholderia
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Burkholderia strongly degrades naringenin; pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitates naringenin biodegradation by the microbiota. |
2016 |
||
|
Novosphingobium
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Novosphingobium strongly degrades naringenin; pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitates naringenin biodegradation by the microbiota. |
2016 |
||
|
Rahnella
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Rahnella may specialize in terpenoid metabolism. |
2016 |
||
|
Serratia
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Serratia may specialize in terpenoid metabolism. |
2016 |
||
|
Pantoea agglomerans
Pseudomonadota |
Macrotermes natalensisSouth Africa |
Bacteria
|
2016 |
||||
|
Pantoea vagans
Pseudomonadota |
Macrotermes natalensisSouth Africa |
Bacteria
|
2016 |
||||
|
Spiroplasma
Mycoplasmatota |
Drosophila melanogasterUganda |
Bacteria
|
Extracellular
|
The presence of Spiroplasma (together with Wolbachia) in D. melanogaster up-regulated certain immune-related genes. |
2016 |
||
|
Wolbachia
Pseudomonadota |
Drosophila melanogasterUganda |
Bacteria
|
Intracellular
|
The presence of Wolbachia (together with Spiroplasma) in D. melanogaster up-regulated certain immune-related genes. |
2016 |
||
|
Burkholderia
Pseudomonadota |
Bacteria
|
2016 |