Functional Symbionts
160 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Candidatus Vallotia spp.
Pseudomonadota |
AdelgidaeUSA, Europe, China… |
Bacteria
|
Extracellular
|
2017 |
|||
|
Burkholderia
Pseudomonadota |
Melolontha hippocastaniGermany |
Bacteria
|
Extracellular
|
Burkholderia is involved in nitrogen recycling. |
2017 |
||
|
Variovorax sp.
Pseudomonadota |
Phlebotomus papatasiTurkey |
Bacteria
|
Extracellular
|
2017 |
|||
|
Saccharedens versatilis
Pseudomonadota |
Bacteria
|
Extracellular
|
Saccharedens versatilis degrades sugar. |
2017 |
|||
|
Burkholderia gladioli
Pseudomonadota |
Lagria hirtaGermany |
Bacteria
|
Extracellular
|
Burkholderia gladioli inhibits the growth of antagonistic fungi on the host's eggs, indicating that the Lagria-associated Burkholderia have evolved into insect defensive mutualists. |
2017 |
||
|
Burkholderia gladioli
Pseudomonadota |
Lagria villosaGermany |
Bacteria
|
Extracellular
|
Burkholderia gladioli inhibits the growth of antagonistic fungi on the host's eggs, indicating that the Lagria-associated Burkholderia have evolved into insect defensive mutualists. |
2017 |
||
|
Delftia lacustris
Pseudomonadota |
Spodoptera frugiperdaBrasil |
Bacteria
|
Intracellular
|
Delftia lacustris may influence the metabolization of pesticides in insects. |
2017 |
||
|
Burkholderia
Pseudomonadota |
Riptortus pedestrisSouth Korea |
Bacteria
|
The lipopolysaccharide core oligosaccharide of Burkholderia is critical in maintaining a proper gut symbiosis, including symbiont titer, host growth, fitness, and defense against bacterial challenge. |
2017 |
|||
|
Burkholderia spp.
Pseudomonadota |
Bacteria
|
Extracellular
|
2016 |
||||
|
Burkholderia
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Burkholderia strongly degrades naringenin; pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitates naringenin biodegradation by the microbiota. |
2016 |
||
|
Burkholderia
Pseudomonadota |
Bacteria
|
2016 |
|||||
|
Achromobacter
Pseudomonadota |
Aedes aegyptiUSA |
Bacteria
|
Achromobacter contributes to the gut microbiome homeostasis maintained by mosquito C-type lectins. |
2016 |
|||
|
Alcaligenes
Pseudomonadota |
Aedes aegyptiUSA |
Bacteria
|
Alcaligenes contributes to the gut microbiome homeostasis maintained by mosquito C-type lectins. |
2016 |
|||
|
Comamonas testosteroni
Pseudomonadota |
Aedes aegyptiUSA |
Bacteria
|
Comamonas testosteroni contributes to the gut microbiome homeostasis maintained by mosquito C-type lectins. |
2016 |
|||
|
Burkholderia
Pseudomonadota |
Riptortus pedestrisSouth Korea |
Bacteria
|
Extracellular
|
Burkholderia gut symbionts positively affect the Riptortus systemic immunity through stronger humoral immunity. |
2015 |
||
|
Comamonas
Pseudomonadota |
Bactrocera dorsalisChina |
Bacteria
|
Extracellular
|
2015 |
|||
|
Comamonas terrigena
Pseudomonadota |
Bactrocera dorsalisChina |
Bacteria
|
Extracellular
|
Comamonas terrigena in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen. |
2015 |
||
|
Burkholderia sp.
Pseudomonadota |
Riptortus pedestrisKorea |
Bacteria
|
Extracellular
|
Burkholderia sp. did not affect the host insect's development, but the first oviposition time was approximately 60% compared with a control group. |
2014 |
||
|
Burkholderia
Pseudomonadota |
Cavelerius saccharivorusJapan |
Bacteria
|
Intracellular
|
2014 |
|||
|
Burkholderia
Pseudomonadota |
Formica exsectaMexico |
Bacteria
|
Extracellular
|
Burkholderia (Bacteria) produces antibiotics. |
2014 |