Functional Symbionts
160 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Candidatus Vallotia spp.
Pseudomonadota |
AdelgidaeHemiptera |
Bacteria
|
Extracellular
|
2017 |
|||
Burkholderia
Pseudomonadota |
Melolontha hippocastaniColeoptera |
Bacteria
|
Extracellular
|
Involved in nitrogen recycling |
2017 |
||
Variovorax sp.
Pseudomonadota |
Phlebotomus papatasiDiptera |
Bacteria
|
Extracellular
|
2017 |
|||
Saccharedens versatilis
Pseudomonadota |
Cephalotes rohweriHymenoptera |
Bacteria
|
Extracellular
|
degrading sugar |
2017 |
||
Burkholderia gladioli
Pseudomonadota |
Lagria hirtaColeoptera |
Bacteria
|
Extracellular
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists |
2017 |
||
Burkholderia gladioli
Pseudomonadota |
Lagria villosaColeoptera |
Bacteria
|
Extracellular
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists |
2017 |
||
Delftia lacustris
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Intracellular
|
may influence the metabolization of pesticides in insects |
2017 |
||
Burkholderia
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
The inner core core oligosaccharide, composed of Kdo (3-deoxy-D-manno-2-octulosonic acid), Ko, and two heptoses, is especially important in maintaining a symbiont titer in the M4 midgut and supporting host growth, fitness, and defense against bacterial challenge |
2017 |
|||
Burkholderia spp.
Pseudomonadota |
Blissus insularisHemiptera |
Bacteria
|
Extracellular
|
2016 |
|||
Burkholderia
Pseudomonadota |
Dendroctonus valensColeoptera |
Bacteria
|
Extracellular
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas. |
2016 |
||
Burkholderia
Pseudomonadota |
Blissus insularisHemiptera |
Bacteria
|
2016 |
||||
Achromobacter
Pseudomonadota |
Aedes aegyptiDiptera |
Bacteria
|
gut microbiome |
2016 |
|||
Alcaligenes
Pseudomonadota |
Aedes aegyptiDiptera |
Bacteria
|
gut microbiome |
2016 |
|||
Comamonas testosteroni
Pseudomonadota |
Aedes aegyptiDiptera |
Bacteria
|
gut microbiome |
2016 |
|||
Burkholderia
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
Extracellular
|
Burkhoderia gut symbiont positively affect the Riptortus systemic immunity through stronger humoral immunity |
2015 |
||
Comamonas
Pseudomonadota |
Bactrocera dorsalisDiptera |
Bacteria
|
Extracellular
|
2015 |
|||
Comamonas terrigena
Pseudomonadota |
Bactrocera dorsalisDiptera |
Bacteria
|
Extracellular
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen. |
2015 |
||
Burkholderia sp.
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
Extracellular
|
Burkholderia sp. did not affect the development of the host insect but the first oviposition time was in approximately 60% compared with a control group |
2014 |
||
Burkholderia
Pseudomonadota |
Cavelerius saccharivorusHemiptera |
Bacteria
|
Intracellular
|
2014 |
|||
Burkholderia
Pseudomonadota |
Formica exsectaHymenoptera |
Bacteria
|
Extracellular
|
produce antibiotics |
2014 |