Functional Symbionts
2682 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Rahnella aquatilis
Pseudomonadota |
Bacteria
|
Extracellular
|
Rahnella aquatilis decreased the monoterpenes (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45%, respectively (detoxification) for Dendroctonus ponderosae. |
2022 |
|||
|
Rahnella
Pseudomonadota |
Bacteria
|
Extracellular
|
Rahnella is a genus that contained the most genes involved in terpene degradation (via metagenomics) in Dendroctonus ponderosae, suggesting a detoxification role. |
2022 |
|||
|
Rahnella aquatilis
Pseudomonadota |
Bacteria
|
Extracellular
|
Rahnella aquatilis degraded 20–50% of α-pinene (detoxification) for Dendroctonus ponderosae. |
2022 |
|||
|
Serritia marcescens
Pseudomonadota |
Bacteria
|
Extracellular
|
Serratia marcescens reduced 49–79% of the monoterpenes 3-carene and (−)-\beta-pinene (detoxification) for Dendroctonus ponderosae. |
2022 |
|||
|
Serratia
Pseudomonadota |
Bacteria
|
Extracellular
|
Serratia is a genus that contained the most genes involved in terpene degradation (via metagenomics) in Dendroctonus ponderosae, suggesting a detoxification role. |
2022 |
|||
|
Serratia sp.
Pseudomonadota |
Bacteria
|
Extracellular
|
Serratia sp. degraded 20–50% of α-pinene (detoxification) for Dendroctonus ponderosae. |
2022 |
|||
|
Serratia marcescens
Pseudomonadota |
Bacteria
|
Extracellular
|
Serratia marcescens (in Rhodnius prolixus) is described in a study which highlights that certain bacteria (like Acinetobacter in C. chinensis) are enriched after saponin treatment and significantly decrease saponin content in vitro. |
2022 |
|||
|
Candidatus Carsonella ruddii
Pseudomonadota |
Diaphorina citriUSA |
Bacteria
|
Extracellular
|
2022 |
|||
|
Candidatus Profftella armatura
Pseudomonadota |
Diaphorina citriUSA |
Bacteria
|
Extracellular
|
2022 |
|||
|
Candidatus Liberibacter asiaticus
Pseudomonadota |
Diaphorina citriUSA |
Bacteria
|
Extracellular
|
2022 |
|||
|
Wolbachia
Pseudomonadota |
Diaphorina citriUSA |
Bacteria
|
Extracellular
|
2022 |
|||
Kerria laccaIndia |
Bacteria
|
Extracellular
|
2022 |
||||
Chilo suppressalisChina |
Bacteria
|
Extracellular
|
2022 |
||||
|
Wolbachia wTcon
Pseudomonadota |
Bacteria
|
Extracellular
|
2022 |
||||
|
Wolbachia strain wSur
Pseudomonadota |
Oryzaephilus surinamensisGermany |
Bacteria
|
Wolbachia strain wSur causes cytoplasmic incompatibility (CI) but does not cause male-killing in the grain pest beetle Oryzaephilus surinamensis. |
2022 |
|||
|
Wolbachia
Pseudomonadota |
Aedes fluviatilisBrazil |
Bacteria
|
Intracellular
|
Wolbachia modulates metabolism and immunity during Aedes fluviatilis oogenesis. |
2022 |
||
|
Ambrosiella roeperi
Ascomycota |
Fungi
|
2022 |
|||||
|
Bombella apis
Pseudomonadota |
Apis melliferaUSA |
Bacteria
|
Intracellular
|
Bombella apis suppresses the growth of fungal pathogens and ultimately protects bee brood from infection in Apis mellifera. |
2021 |
||
|
Amylostereum areolatum
Basidiomycota |
Sirex noctilioUSA |
Fungi
|
Extracellular
|
Amylostereum areolatum produces fungal volatiles that attract both the host Sirex noctilio and its parasitoid, Ibalia leucospoides (semiochemical biosynthesis). |
2021 |
||
|
Endoconidiophora
Ascomycota |
Dendroctonus micansChina |
Fungi
|
Extracellular
|
2021 |