Functional Symbionts
759 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Enterobacter agglomerans
Pseudomonadota |
Bacteria
|
Extracellular
|
Enterobacter agglomerans (Pantoea) attracts the apple maggot fly, Rhagoletis pomonella, to oviposition sites on host fruit. |
2000 |
|||
|
Buchnera spp.
Pseudomonadota |
Bemisia tabaciIsrael |
Bacteria
|
Extracellular
|
Buchnera spp. produces the GroEL chaperone protein, which binds to plant viruses and makes virus transmission efficient (virus interaction). |
1999 |
||
|
Sitophilus oryzae principal endosymbiont (SOPE)
Pseudomonadota |
Sitophilus oryzaeChina, France |
Bacteria
|
Intracellular
|
Sitophilus oryzae principal endosymbiont (SOPE) induces the specific differentiation of bacteriocytes and increases mitochondrial oxidative phosphorylation through the supply of pantothenic acid and riboflavin (nutrient provision/vitamin supplementation). |
1999 |
||
|
Buchnera aphidicola
Pseudomonadota |
Bacteria
|
Extracellular
|
Buchnera aphidicola synthesizes the essential amino acid tryptophan. |
1994 |
|||
|
Serratia marcescens
Pseudomonadota |
Tenebrio molitorPoland |
Bacteria
|
Extracellular
|
Serratia marcescens exhibits plastic-degrading properties against bioplastics such as PBSA, PBS, and PCL. |
2020 |
||
|
Klebsiella oxytoca
Pseudomonadota |
Tenebrio molitorPoland |
Bacteria
|
Extracellular
|
Klebsiella oxytoca exhibits plastic-degrading properties against bioplastics such as PBSA, PBS, and PCL. |
2020 |
||
|
Hafnia-Obesumbacterium sp.
Pseudomonadota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Hafnia-Obesumbacterium sp. is associated with PET degradation. |
2023 |
||
|
Citrobacter sp.
Pseudomonadota |
Tenebrio molitorUSA |
Bacteria
|
Extracellular
|
Citrobacter sp. degrades polystyrene (PS). |
2018 |
||
|
Kosakonia sp.
Pseudomonadota |
Tenebrio molitorUSA |
Bacteria
|
Extracellular
|
Kosakonia sp. degrades polystyrene (PS). |
2018 |
||
|
Mixta tenebrionis BIT-26
Pseudomonadota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Mixta tenebrionis BIT-26 degrades polystyrene (PS). |
2024 |
||
|
Klebsiella
Pseudomonadota |
Zophobas atratusKorea |
Bacteria
|
Extracellular
|
Klebsiella degrades polybutylene succinate (PBS). |
2023 |
||
|
Serratia sp.
Pseudomonadota |
Plesiophthalmus davidisSouth Korea |
Bacteria
|
Extracellular
|
Serratia sp. degrades Polystyrene (PS). |
2020 |
||
|
Klebsiella aerogenes strain DAI2m/a
Pseudomonadota |
Alphitobius diaperinusItaly |
Bacteria
|
Extracellular
|
Klebsiella aerogenes strain DAI2m/a degrades Polystyrene (PS). |
2022 |
||
|
Klebsiella sp. WJ2020
Pseudomonadota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Klebsiella sp. WJ2020 degrades Polystyrene (PS). |
2024 |
||
|
Citrobacter koseri
Pseudomonadota |
Zophobas atratusKorea |
Bacteria
|
Extracellular
|
Citrobacter koseri degrades polyvinyl chloride (PVC). |
2023 |
||
|
Serratia marcescens ZJC2
Pseudomonadota |
Plodia interpunctellaChina |
Bacteria
|
Extracellular
|
Serratia marcescens ZJC2 degrades polyethylene (PE). |
2022 |
||
|
Enterobacter hormaechei LG3
Pseudomonadota |
Tenebrio molitorSouth Korea |
Bacteria
|
Extracellular
|
Enterobacter hormaechei LG3 degrades polyethylene (PE). |
2023 |
||
|
Fukatsuia
Gammaproteobacteria |
Bacteria
|
Intracellular
|
Fukatsuia symbiotica provides defense against fungal pathogens but interferes with host embryonic development and reproduction, especially at warmer temperatures (natural enemy resistance, growth regulation, developmental modulation). |
2025 |
|||
|
Sulcia
Pseudomonadota |
Bacteria
|
Intracellular
|
Sulcia selectively maintains genes replacing functions of its predecessor for amino-acid biosynthesis and retains genes underlying efficient routes of energy production, including a complete TCA cycle, potentially relaxing the severe energy limitations of the xylem-feeding hosts (amino acid provision, growth regulation). |
2014 |