Functional Symbionts
90 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Pseudomonas citronellolis NBRC 1None3None43
Pseudomonadota |
Oryctes rhinocerosColeoptera |
Bacteria
|
gut microbe |
2020 |
|||
Pseudomonas japonica
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
2020 |
|||
Pseudomonas fulva
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
Extracellular
|
Detoxification of plant secondary compounds |
2020 |
||
Pseudomonas protegens
Pseudomonadota |
Delia antiquaDiptera |
Bacteria
|
Extracellular
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids |
2020 |
||
Pseudomonas fulva
Pseudomonadota |
Aphis gossypiiHemiptera |
Bacteria
|
Extracellular
|
By using caffeine from plants to produce nitrogen, this bacterium allows the coffee borer beetle to survive in coffee plants |
2019 |
||
Pseudomonas fulva
Pseudomonadota |
Myzus persicaeHemiptera |
Bacteria
|
Extracellular
|
By using caffeine from plants to produce nitrogen, this bacterium allows the coffee borer beetle to survive in coffee plants |
2019 |
||
Pseudomonas
Pseudomonadota |
Callosobruchus maculatusColeoptera |
Bacteria
|
Extracellular
|
These bacterial phyla may allow the adults C. maculatus to survive on DDVP treated grains, thereby making it inappropriate to control the beetle populations in the field. |
2019 |
||
Pseudomonas protegens
Pseudomonadota |
Delia antiquaDiptera |
Bacteria
|
Extracellular
|
suppressed Beauveria bassiana conidia germination and hyphal growth |
2019 |
||
Pseudomonas fulva
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
Extracellular
|
Antibiotic-treated larvae showed lower caffeine-degrading activity and increased mortality. These deficients were recovered by inoculation of the caffeine-degrading symbiont. A caffeine-degrading gene was detected from the symbiont |
2018 |
||
Pseudomonas aeroginosa
Pseudomonadota |
Cleonus trivittatusColeoptera |
Bacteria
|
Extracellular
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro |
2018 |
||
Pseudomonas aeroginosa
Pseudomonadota |
Delia lupiniDiptera |
Bacteria
|
Extracellular
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro |
2018 |
||
Pseudomonas aeroginosa
Pseudomonadota |
Walshia miscecolorellaLepidoptera |
Bacteria
|
Extracellular
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro |
2018 |
||
Pseudomonas sp.
Pseudomonadota |
Liometopum apiculatumHymenoptera |
Bacteria
|
2018 |
||||
Pseudomonas
Pseudomonadota |
Orseolia oryzaeDiptera |
Bacteria
|
Extracellular
|
Pseudomonas may also play a role in the breakdown of plant defence biomolecules produced by the rice host in response to the gall midge infestation |
2017 |
||
Pseudomonas sp. 7 B321
Pseudomonadota |
Dendroctonus valensColeoptera |
Bacteria
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae |
2017 |
|||
Candidatus Pseudomonas adelgestsugas
Pseudomonadota |
AdelgidaeHemiptera |
Bacteria
|
Extracellular
|
2017 |
|||
Pseudomonas
Pseudomonadota |
Leptinotarsa decemlineataColeoptera |
Bacteria
|
Extracellular
|
It is primarily responsible for suppression of plant defenses in tomato and potato. |
2017 |
||
Pseudomonas stutzeri
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
2017 |
|||
Pseudomonas psychrotolerans
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
2017 |
|||
Pseudomonas stutzeri
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Intracellular
|
may influence the metabolization of pesticides in insects |
2017 |