Functional Symbionts
759 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Pectobacterium carotovorum
Pseudomonadota |
MuscidaeBrazil, USA, Singap… |
Bacteria
|
Extracellular
|
2017 |
|||
|
Candidatus Erwinia dacicola
Pseudomonadota |
Bactrocera oleaeGreece |
Bacteria
|
Extracellular
|
Candidatus Erwinia dacicola contains a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives, and shows activated amino-acid metabolism during larval development. |
2017 |
||
|
Enterobacter sp.
Pseudomonadota |
Bacteria
|
Extracellular
|
Enterobacter sp. might be a promising paratransgenesis candidate. |
2017 |
|||
|
Citrobacter freundii
Pseudomonadota |
Bactrocera dorsalisChina |
Bacteria
|
Extracellular
|
Citrobacter freundii is involved in the degradation of trichlorphon. |
2017 |
||
|
Wigglesworthia glossinidia
Pseudomonadota |
Bacteria
|
Intracellular
|
Wigglesworthia glossinidia synthesizes a large number of B vitamins to supplement the host's nutritional deficiencies. |
2017 |
|||
|
Candidatus Westeberhardia cardiocondylae
Pseudomonadota |
Cardiocondyla obscuriorBrazil, Japan, Spa… |
Bacteria
|
Intracellular
|
Candidatus Westeberhardia cardiocondylae contributes to cuticle formation and is responsible for host invasive success. |
2016 |
||
|
Candidatus Westeberhardia cardiocondylae
Pseudomonadota |
Cardiocondyla obscuriorBrazil, Japan, Spa… |
Bacteria
|
Intracellular
|
Candidatus Westeberhardia cardiocondylae contributes to cuticle formation. |
2016 |
||
|
Rahnella aquatilis
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Rahnella aquatilis could alleviate or compromise the antagonistic effects of fungi (O. minus and L. procerum) on RTB larval growth. |
2016 |
||
|
Serratia liquefaciens
Pseudomonadota |
Dendroctonus valensChina |
Bacteria
|
Extracellular
|
Serratia liquefaciens could alleviate or compromise the antagonistic effects of fungi (O. minus and L. procerum) on RTB larval growth. |
2016 |
||
|
Arsenophonus
Pseudomonadota |
Aphis gossypiiChina |
Bacteria
|
Intracellular
|
Arsenophonus dispersal might involve plant mediation and parasitism, and it was reported to be involved in host plant specialization in the polyphagous aphid, Aphis craccivora. |
2016 |
||
|
Buchnera
Pseudomonadota |
Aphis gossypiiChina |
Bacteria
|
Intracellular
|
Buchnera is critically dependent on symbiosis with the host to utilize phloem sap as its sole dietary component. |
2016 |
||
|
Hamiltonella
Pseudomonadota |
Aphis gossypiiChina |
Bacteria
|
Intracellular
|
Hamiltonella is known to protect aphids against parasitism. |
2016 |
||
|
Candidatus Dasytiphilus stammeri
Pseudomonadota |
Dasytes PlumbeusGermany |
Bacteria
|
Intracellular
|
2016 |
|||
|
Candidatus Dasytiphilus stammeri
Pseudomonadota |
Dasytes virensGermany |
Bacteria
|
Intracellular
|
2016 |
|||
|
Pantoea
Pseudomonadota |
Spodoptera littoralisChina |
Bacteria
|
Extracellular
|
Pantoea is involved in degrading and utilizing different types of plant materials. |
2016 |
||
|
Candidatus Arsenophonus nilaparvatae
Pseudomonadota |
Nilaparvata lugensChina |
Bacteria
|
Intracellular
|
Candidatus Arsenophonus nilaparvatae (a facultative endosymbiont) has the potential role of synthesizing B vitamins for the host. |
2016 |
||
|
Arsenophonus nilaparvatae
Pseudomonadota |
Nilaparvata lugensChina |
Bacteria
|
2016 |
||||
|
Candidatus Regiella insecticola
Pseudomonadota |
Sitobion avenaeChina |
Bacteria
|
Extracellular
|
Candidatus Regiella insecticola infection in aphids led to increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles in plant-insect interactions. |
2016 |
||
|
Bacillus cereus
Bacillota |
Bacteria
|
Bacillus cereus is involved in the degradation of acephate and uses acephate as a source of carbon and energy for growth. |
2016 |
||||
|
Enterobacter
Pseudomonadota |
Bacteria
|
Enterobacter is involved in the degradation of acephate and uses acephate as a source of carbon and energy for growth. |
2016 |