Functional Symbionts
2682 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Bacillus subtilis
Bacillota |
Bombyx moriChina |
Bacteria
|
Extracellular
|
Bacillus subtilis generates a variety of primary and secondary metabolites (such as B vitamins and antimicrobial compounds) to provide micronutrients and enhance the pathogen resistance of Bombyx mori. The antimicrobial compounds are the primary driving force for reconstruction of the intestinal microbiota. |
2022 |
||
Psylliodes attenuataChina |
Bacteria
|
2022 |
|||||
|
Amycolatopsis
Actinomycetota |
Trachymyrmex smithiNew Mexico |
Bacteria
|
Extracellular
|
Amycolatopsis inhibited the growth of Pseudonocardia symbionts under laboratory conditions, with the novel analog nocamycin V identified as the antibacterial compound in the ant Trachymyrmex smithi. |
2022 |
||
Gampsocleis gratiosaChina |
Bacteria
|
2022 |
|||||
Culex pipiensUSA |
Bacteria
|
Extracellular
|
2022 |
||||
|
Burkholderia
Pseudomonadota |
Lagria villosaBrazil |
Bacteria
|
Burkholderia is an ectosymbiont whose removal significantly impairs the survival probability of young Lagria villosa larvae when exposed to pathogenic fungi, indicating a chemical protection role during molting. |
2022 |
|||
|
Chroococcidiopsis
Cyanobacteriota |
Ceratitis capitataPavia |
Bacteria
|
Extracellular
|
2022 |
|||
|
Klebsiella
Pseudomonadota |
Ceratitis capitataPavia |
Bacteria
|
Extracellular
|
2022 |
|||
|
Providencia
Pseudomonadota |
Ceratitis capitataPavia |
Bacteria
|
Extracellular
|
2022 |
|||
|
Propionibacterium
Actinomycetota |
Ceratitis capitataPavia |
Bacteria
|
Extracellular
|
2022 |
|||
|
Wolbachia
Pseudomonadota |
Cimex hemipterusMalaysia |
Bacteria
|
Intracellular
|
Wolbachia's disruption could be related to the enhanced susceptibility of Cimex hemipterus towards the insecticides fenitrothion and imidacloprid. |
2022 |
||
|
Yersinia
Pseudomonadota |
Cimex hemipterusMalaysia |
Bacteria
|
Yersinia's disruption possibly could be related to the enhanced susceptibility of Cimex hemipterus towards the insecticides fenitrothion and imidacloprid. |
2022 |
|||
|
Bacillus flexus
Bacillota |
Sitophilus oryzaeChina |
Bacteria
|
Extracellular
|
Bacillus flexus can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as a carbon source in vitro, suggesting a role in host pesticide resistance. |
2022 |
||
|
Bacillus subtilis
Bacillota |
Sitophilus oryzaeChina |
Bacteria
|
Extracellular
|
Bacillus subtilis can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as a carbon source in vitro, suggesting a role in host pesticide resistance. |
2022 |
||
|
Bacillus licheniformis
Bacillota |
Rhyzopertha dominicaChina |
Bacteria
|
Extracellular
|
Bacillus licheniformis can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as a carbon source in vitro, suggesting a role in host pesticide resistance. |
2022 |
||
|
Enterobacter sp.
Pseudomonadota |
Sitophilus oryzaeChina |
Bacteria
|
Extracellular
|
Enterobacter sp. can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as a carbon source in vitro, suggesting a role in host pesticide resistance. |
2022 |
||
|
Enterococcus faecalis
Bacillota |
Cryptolestes ferrugineusChina |
Bacteria
|
Extracellular
|
Enterococcus faecalis can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as a carbon source in vitro, suggesting a role in host pesticide resistance. |
2022 |
||
|
Xanthomonas sp. HY-71
Pseudomonadota |
Xylocopa appendiculataSouth Korea |
Bacteria
|
Extracellular
|
Xanthomonas sp. HY-71 is an effective polyurethane (PU)-degradable bacterium that can use polyacryl-based PU (as well as PS-PU and PE-PU) as a nutritional source in the gut of Xylocopa appendiculata. |
2022 |
||
|
Bacteria
|
Extracellular
|
2022 |
|||||
|
Acinetobacter soli
Pseudomonadota |
Plutella xylostellaChina |
Bacteria
|
Extracellular
|
2022 |