Functional Symbionts
2657 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Bacillus subtilis
Bacillota |
Bombyx moriLepidoptera |
Bacteria
|
Extracellular
|
B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host; The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota |
2022 |
||
Psylliodes attenuataColeoptera |
Bacteria
|
2022 |
|||||
Amycolatopsis
Actinomycetota |
Trachymyrmex smithiHymenoptera |
Bacteria
|
Extracellular
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound |
2022 |
||
Gampsocleis gratiosaOrthoptera |
Bacteria
|
2022 |
|||||
Culex pipiensDiptera |
Bacteria
|
Extracellular
|
2022 |
||||
Burkholderia
Pseudomonadota |
Lagria villosaColeoptera |
Bacteria
|
removal of the community significantly impairs the survival probability of young larvae when exposed to different pathogenic Fungi |
2022 |
|||
Chroococcidiopsis
Cyanobacteriota |
Ceratitis capitataDiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Klebsiella
Pseudomonadota |
Ceratitis capitataDiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Providencia
Pseudomonadota |
Ceratitis capitataDiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Propionibacterium
Actinomycetota |
Ceratitis capitataDiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Wolbachia
Pseudomonadota |
Cimex hemipterusHemiptera |
Bacteria
|
Intracellular
|
the disruption of the abundant Wolbachia could be related to the enhanced susceptibility towards the insecticides |
2022 |
||
Yersinia
Pseudomonadota |
Cimex hemipterusHemiptera |
Bacteria
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides |
2022 |
|||
Bacillus flexus
Bacillota |
Sitophilus oryzaeColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Bacillus subtilis
Bacillota |
Sitophilus oryzaeColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Bacillus licheniformis
Bacillota |
Rhyzopertha dominicaColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Enterobacter sp.
Pseudomonadota |
Sitophilus oryzaeColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Enterococcus faecalis
Bacillota |
Cryptolestes ferrugineusColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Xanthomonas sp. HY-71
Pseudomonadota |
Xylocopa appendiculataHymenoptera |
Bacteria
|
Extracellular
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU |
2022 |
||
Xylocopa carpenterHymenoptera |
Bacteria
|
Extracellular
|
2022 |
||||
Acinetobacter soli
Pseudomonadota |
Plutella xylostellaLepidoptera |
Bacteria
|
Extracellular
|
2022 |