Functional Symbionts
160 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Burkholderia
Pseudomonadota |
Leptoglossus phyllopusHemiptera |
Bacteria
|
Extracellular
|
Symbiotic nymphs grew more rapidly, were approximately four times more likely to survive to adulthood than aposymbiotic bugs, and were two times larger |
2022 |
||
Comamonas koreensi
Pseudomonadota |
Melanaphis bambusaeHemiptera |
Bacteria
|
2022 |
||||
Delftia lacustris
Pseudomonadota |
Melanaphis bambusaeHemiptera |
Bacteria
|
2022 |
||||
Caballeronia zhejiangensis
Pseudomonadota |
Anasa tristisHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Caballeronia grimmiae
Pseudomonadota |
Leptoglossus zonatusHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Caballeronia concitans
Pseudomonadota |
Leptoglossus zonatusHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Caballeronia concitans
Pseudomonadota |
Jalysus wickhamiHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Caballeronia concitans
Pseudomonadota |
Anasa tristisHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Caballeronia concitans
Pseudomonadota |
Jalysus wickhamiHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Cupriavidus pauculus
Pseudomonadota |
Alydus tomentosusHemiptera |
Bacteria
|
Extracellular
|
2022 |
|||
Burkholderia cepacia BsNLG8
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Intracellular
|
BsNLG8 significantly inhibited the growth of phytopathogenic fungi and also demonstrated the ability to produce siderophores, which explains its antagonistic mechanism. |
2022 |
||
Burkholderia
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
2022 |
||
Lampropedia sp.
Pseudomonadota |
Delia antiquaDiptera |
Bacteria
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively |
2021 |
|||
Burkholderia gladioli Lv-StA
Pseudomonadota |
Lagria villosaColeoptera |
Bacteria
|
Extracellular
|
Antibiotic production |
2021 |
||
Delftia sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-19 oxidation pathway |
2021 |
|||
Burkholderia insecticola
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
stimulates the sprouting of tracheal branches toward the symbiont-infected M4 crypts |
2021 |
|||
Burkholderiales
Pseudomonadota |
CephalotesHymenoptera |
Bacteria
|
enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids |
2021 |
|||
Burkholderia
Pseudomonadota |
Blissus insularisHemiptera |
Bacteria
|
Extracellular
|
the initial colonization by Burkholderia programs the ontogeny of the midgut, providing a sheltered residence protected from microbial antagonists |
2021 |
||
Burkholderia symbiont strain SFA1
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
degrade this insecticide through a horizontally acquired insecticide-degrading enzyme into the non-insecticidal |
2021 |
|||
Caballeronia
Pseudomonadota |
Anasa tristisHemiptera |
Bacteria
|
Extracellular
|
improve the survival rate and shorten the development time of Pumpkin Bedbug |
2021 |