Functional Symbionts
2657 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Candidatus Regiella insecticola
Pseudomonadota |
Sitobion avenaeHemiptera |
Bacteria
|
Intracellular
|
Presence of the symbiont also reduced parasitoid Aphidius gifuensis parasitic success, increased the wasp development time and decreased its emergence weight |
2023 |
||
Hesperomyces harmoniae
Ascomycota |
Harmonia axyridisColeoptera |
Fungi
|
Extracellular
|
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont |
2023 |
||
Spiroplasma
Mycoplasmatota |
Harmonia axyridisColeoptera |
Bacteria
|
Intracellular
|
female ladybirds co-infected with Hesperomyces harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont |
2023 |
||
Pseudomonas sp
Pseudomonadota |
Plagiodera versicoloraColeoptera |
Bacteria
|
Pseudomonas sp. core bacteria can promote host infection by entomopathogenic fungus |
2023 |
|||
Blattabacterium
Bacteroidota |
Celatoblatta quinquemaculataBlattodea |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Fusarium spp.
Ascomycota |
Celatoblatta quinquemaculataBlattodea |
Fungi
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Fusarium spp.
Ascomycota |
Hemideina maoriOrthoptera |
Fungi
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Fusarium spp.
Ascomycota |
Sigaus australisOrthoptera |
Fungi
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Mortierella spp.
Mucoromycota |
Celatoblatta quinquemaculataBlattodea |
Fungi
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Mortierella spp.
Mucoromycota |
Hemideina maoriOrthoptera |
Fungi
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Mortierella spp.
Mucoromycota |
Sigaus australisOrthoptera |
Fungi
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Pseudomonas syringae
Pseudomonadota |
Celatoblatta quinquemaculataBlattodea |
Bacteria
|
initiate crystallization of water |
2023 |
|||
Pseudomonas syringae
Pseudomonadota |
Hemideina maoriOrthoptera |
Bacteria
|
initiate crystallization of water |
2023 |
|||
Pseudomonas syringae
Pseudomonadota |
Sigaus australisOrthoptera |
Bacteria
|
initiate crystallization of water |
2023 |
|||
Pseudomonas fluorescens
Pseudomonadota |
Celatoblatta quinquemaculataBlattodea |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Pseudomonas fluorescens
Pseudomonadota |
Hemideina maoriOrthoptera |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Pseudomonas fluorescens
Pseudomonadota |
Sigaus australisOrthoptera |
Bacteria
|
contribute to freeze-tolerance of the insect hosts |
2023 |
|||
Cryptococcus sp.
Basidiomycota |
Ips typographusColeoptera |
Fungi
|
has the potential of degrading plant cell wall |
2023 |
|||
Kuraishia molischiana
Ascomycota |
Ips typographusColeoptera |
Fungi
|
has the potential of degrading plant cell wall |
2023 |
|||
Nakazawaea ambrosiae
Ascomycota |
Ips typographusColeoptera |
Fungi
|
has the potential of degrading plant cell wall |
2023 |