Functional Symbionts
2682 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
| Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
|---|---|---|---|---|---|---|---|
|
Enterococcus
Bacillota |
Spodoptera frugiperdaChina |
Bacteria
|
Extracellular
|
2023 |
|||
|
Providencia
Pseudomonadota |
Spodoptera frugiperdaChina |
Bacteria
|
Extracellular
|
2023 |
|||
|
Ralstonia
Pseudomonadota |
Spodoptera frugiperdaChina |
Bacteria
|
Extracellular
|
2023 |
|||
|
Sediminibacterium
Bacteroidota |
Spodoptera frugiperdaChina |
Bacteria
|
Extracellular
|
2023 |
|||
|
Convivina intestini strain DSM 28795
Bacillota |
Vespa velutinaBelgium |
Bacteria
|
Extracellular
|
Convivina intestini strain DSM 28795 is a specialized core gut symbiont of Vespa velutina that shows adaptation towards amino acid metabolism. |
2023 |
||
|
Convivina praedatoris
Bacillota |
Vespa velutinaBelgium |
Bacteria
|
Extracellular
|
Convivina praedatoris is a specialized core gut symbiont of Vespa velutina that shows adaptation towards carbohydrate metabolism. |
2023 |
||
|
Cronobacter
Pseudomonadota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Cronobacter may be indirectly involved in the digestion of polyethylene (PE), supporting the plastic biodegradation capability of Tenebrio molitor larvae. |
2023 |
||
|
Enterococcus
Bacillota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Enterococcus is associated with the biodegradation of polyethylene (PE), supporting the plastic biodegradation capability of Tenebrio molitor larvae. |
2023 |
||
|
Lactococcus
Bacillota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Lactococcus is associated with the biodegradation of polyethylene (PE), supporting the plastic biodegradation capability of Tenebrio molitor larvae. |
2023 |
||
|
Spiroplasma
Mycoplasmatota |
Tenebrio molitorChina |
Bacteria
|
Extracellular
|
Spiroplasma is associated with the biodegradation of polyethylene (PE), supporting the plastic biodegradation capability of Tenebrio molitor larvae. |
2023 |
||
|
Sodalis pierantonius
Pseudomonadota |
Sitophilus oryzaeFrance |
Bacteria
|
Sodalis pierantonius (based on gene expression analysis) may influence host immunity, metabolism, metal control, apoptosis, and bacterial stress response in the cereal weevil, Sitophilus oryzae. |
2023 |
|||
|
Bostrichicola ureolyticus
Bacteroidota |
BostrichidaeGermany, Czech, Y… |
Bacteria
|
Bostrichicola ureolyticus complements Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, providing additional benefits on nitrogen-poor diets in xylophagous beetles. |
2023 |
|||
|
Shikimatogenerans bostrichidophilus
Bacteroidota |
BostrichidaeGermany, Czech, Y… |
Bacteria
|
Shikimatogenerans bostrichidophilus encodes the shikimate pathway to produce tyrosine precursors, likely supplementing the beetles' cuticle biosynthesis, sclerotization, and melanization. |
2023 |
|||
|
Candidatus Blochmanniella pennsylvanica
Pseudomonadota |
Bacteria
|
2023 |
|||||
|
Wolbachia pipientis
Pseudomonadota |
Bacteria
|
2023 |
|||||
|
Bacteroides
Bacteroidota |
Leptocybe invasaChina |
Bacteria
|
male killing |
2023 |
|||
|
Rickettsia
Pseudomonadota |
Leptocybe invasaChina |
Bacteria
|
Intracellular
|
male killing |
2023 |
||
|
Bacillus
Bacillota |
Bactrocera dorsalisChina |
Bacteria
|
Bacillus produces the sex pheromone compounds TMP or TTMP (trimethylpyrazine or tetramethylpyrazine), which are critical for determining sex pheromone specificity in Bactrocera dorsalis. |
2023 |
|||
|
Bacillus
Bacillota |
Bactrocera cucurbitaeChina |
Bacteria
|
Bacillus produces the sex pheromone compounds TMP or TTMP (trimethylpyrazine or tetramethylpyrazine), which are critical for determining sex pheromone specificity in Bactrocera cucurbitae. |
2023 |
|||
plant-feeding true bugsChina |
Bacteria and Fungi
|
The microbiome displays dramatic replacements of dominant bacteria which may have helped drive the adaptive radiation of plant-feeding true bugs in the early Cretaceous. |
2023 |