Functional Symbionts
758 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Candidatus Ishikawaella capsulata
Pseudomonadota |
Psylliodes chrysocephalaColeoptera |
Bacteria
|
Extracellular
|
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS) |
2022 |
||
Erwinia dacicola
Pseudomonadota |
Bactrocera oleaeDiptera |
Bacteria
|
Extracellular
|
Larvae developed in unripe olive harbored more E. dacicola (by 16S rRNA gene sequencing) |
2022 |
||
Lymantria disparLepidoptera |
Bacteria
|
Extracellular
|
Abundance of genus Pseudomonas in D. superans larvae increased, but Serratia and Enterobacter decreased, and L. dispar larvae fed on aconitine-treated diet and nicotine-treated diet shared dominant bacteria Enterococcus (by 16S rRNA gene sequencing) |
2022 |
|||
Pantoea sp. Pc8
Pseudomonadota |
Psylliodes chrysocephalaColeoptera |
Bacteria
|
Extracellular
|
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS) |
2022 |
||
Rahnella aquatilis
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively |
2022 |
||
Rahnella
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
2022 |
||
Rahnella aquatilis
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
Degraded 20–50% of α-pinene (by GC-MS) |
2022 |
||
Serritia marcescens
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
S. marcescens reduced 49–79% of 3-carene and (−)-β-pinene |
2022 |
||
Serratia
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
Genera contained most genes involved in terpene degradation (by metagenomics) |
2022 |
||
Serratia sp.
Pseudomonadota |
Dendroctonus ponderosaeColeoptera |
Bacteria
|
Extracellular
|
Degraded 20–50% of α-pinene (by GC-MS) |
2022 |
||
Serratia marcescens
Pseudomonadota |
Rhodnius prolixusHemiptera |
Bacteria
|
Extracellular
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC) |
2022 |
||
Morganella morganii
Pseudomonadota |
Delia antiquaDiptera |
Bacteria
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively |
2021 |
|||
Buchnera aphidicola
Pseudomonadota |
Myzus persicaeHemiptera |
Bacteria
|
Intracellular
|
aphid endosymbiont Buchnera aphidicola can facilitate cucumber mosaic virus (CMV) transmission by modulating plant volatile profiles |
2021 |
||
Candidatus Pantoea persica
Pseudomonadota |
Acrosternum arabicumHemiptera |
Bacteria
|
Extracellular
|
shown to be highly abundant in a specific portion of the gut and necessary for the host development |
2021 |
||
Pectobacterium
Pseudomonadota |
Pseudoregma bambucicolaHemiptera |
Bacteria
|
may help P. bambucicola feed on the stalks of bamboo |
2021 |
|||
Enterobacteriaceae
Pseudomonadota |
Hermetia illucensDiptera |
Bacteria
|
Extracellular
|
may help to metabolize compounds such as gossypol |
2021 |
||
Erwinia sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-12 oxidation pathway |
2021 |
|||
Klebsiella sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-17 oxidation pathway |
2021 |
|||
Kosakonia sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-16 oxidation pathway |
2021 |
|||
Pantoea sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-14 oxidation pathway |
2021 |