Functional Symbionts
159 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Erwinia sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-12 oxidation pathway |
2021 |
|||
Klebsiella sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-17 oxidation pathway |
2021 |
|||
Kosakonia sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-16 oxidation pathway |
2021 |
|||
Lactococcus sp.
Bacillota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-13 oxidation pathway |
2021 |
|||
Leuconostoc sp.
Bacillota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-18 oxidation pathway |
2021 |
|||
Paenibacillus sp.
Bacillota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-9 oxidation pathway |
2021 |
|||
Pantoea sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-14 oxidation pathway |
2021 |
|||
Pseudomonas sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-15 oxidation pathway |
2021 |
|||
Stenotrophomonas sp.
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
might contribute to caffeine breakdown using the C-20 oxidation pathway |
2021 |
|||
Acetinobacter
Pseudomonadota |
Prays oleaeLepidoptera |
Bacteria
|
participate in detoxicating |
2021 |
|||
Acetinobacter
Pseudomonadota |
Prays oleaeLepidoptera |
Bacteria
|
participate in detoxicating |
2021 |
|||
Pseudomonas
Pseudomonadota |
Oulema melanopusColeoptera |
Bacteria
|
Extracellular
|
can be involved in the digestion of insect host’s food and plant secondary metabolites, which may increase the availability of nutrients |
2021 |
||
Enterobacter
Pseudomonadota |
Monochamus alternatusColeoptera |
Bacteria
|
Extracellular
|
may help M. alternatus degrade cellulose and pinene |
2020 |
||
Lactococcus
Bacillota |
Monochamus alternatusColeoptera |
Bacteria
|
Extracellular
|
may help M. alternatus degrade cellulose and pinene |
2020 |
||
Pseudomonas
Pseudomonadota |
Monochamus alternatusColeoptera |
Bacteria
|
Extracellular
|
may help M. alternatus degrade cellulose and pinene |
2020 |
||
Raoultella
Pseudomonadota |
Monochamus alternatusColeoptera |
Bacteria
|
Extracellular
|
may help M. alternatus degrade cellulose and pinene |
2020 |
||
Serratia
Pseudomonadota |
Monochamus alternatusColeoptera |
Bacteria
|
Extracellular
|
may help M. alternatus degrade cellulose and pinene |
2020 |
||
Candidatus Erwinia dacicola
Pseudomonadota |
Bactrocera oleaeDiptera |
Bacteria
|
Intracellular
|
the symbiont may contribute to larval survival in unripe olives |
2020 |
||
Pantoea
Pseudomonadota |
Psylliodes chrysocephalaColeoptera |
Bacteria
|
Extracellular
|
Detoxification of plant secondary compounds |
2020 |
||
Pseudomonas fulva
Pseudomonadota |
Hypothenemus hampeiColeoptera |
Bacteria
|
Extracellular
|
Detoxification of plant secondary compounds |
2020 |