Functional Symbionts
159 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Serratia sp. Se-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia bockelmannii
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. PF2-63
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. PF-27
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Serratia
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Serratia
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Stenotrophomonas sp. St-PFmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Stenotrophomonas sp. St-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Stenotrophomonas sp. St-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Stenotrophomonas sp. St-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Stenotrophomonas sp. PFBMAA-4
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Stenotrophomonas sp. RS-48
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Stenotrophomonas
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Stenotrophomonas
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |