Functional Symbionts
159 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Pseudomonas fulva ZJU1
Pseudomonadota |
Bombyx moriLepidoptera |
Bacteria
|
Extracellular
|
Pseudomonas fulva ZJU1 can degrade and utilize the mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ) as the sole energy source, and after inoculation into nonspecialists, P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth |
2024 |
||
Enterococcus faecalis
Bacillota |
Bactrocera minaxDiptera |
Bacteria
|
Extracellular
|
egrade phenols in unripe citrus in B. minax larvae |
2024 |
||
Serratia marcescens
Pseudomonadota |
Bactrocera minaxDiptera |
Bacteria
|
Extracellular
|
egrade phenols in unripe citrus in B. minax larvae |
2024 |
||
Gilliamella apicola
Pseudomonadota |
Apis melliferaHymenoptera |
Bacteria
|
Extracellular
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees. |
2024 |
||
Pantoea sp. Nvir
Pseudomonadota |
Nezara viridulaHemiptera |
Bacteria
|
Intracellular and Extracellular
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition |
2024 |
||
Serratia marcescens
Pseudomonadota |
Nezara viridulaHemiptera |
Bacteria
|
Intracellular and Extracellular
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition |
2024 |
||
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||||
Pantoea sp. Pa-EAmG
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. Pa-EAmG
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. Pa-EAmG
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. EA-12
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea sp. EABMAA-21
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Pantoea
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Pantoea
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Pantoea
Pseudomonadota |
Eumaeus atalaLepidoptera |
Bacteria
|
Extracellular
|
might play a role in detoxifying cycad toxins |
2023 |
||
Serratia sp. Se-RSBMAAmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-PFBMAAmG
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia sp. Se-RSmG
Pseudomonadota |
Rhopalotria slossonaeColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia bockelmannii
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |
||
Serratia bockelmannii
Pseudomonadota |
Pharaxonotha floridanaColeoptera |
Bacteria
|
Extracellular
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores |
2023 |