Functional Symbionts
101 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Wolbachia
Pseudomonadota |
Chilo suppressalisLepidoptera |
Bacteria
|
Intracellular
|
Wolbachia reduce the susceptibility of C. suppressalis to fipronil and avermectin |
2020 |
||
Wolbachia
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Intracellular
|
enhances expression of NlCYP4CE1 in response to imidacloprid stress |
2020 |
||
Enterococcus mundtii
Bacillota |
Spodoptera lituraLepidoptera |
Bacteria
|
degrading flubendiamide |
2019 |
|||
Enterococcus casseliflavus
Bacillota |
Spodoptera lituraLepidoptera |
Bacteria
|
degrading flubendiamide |
2019 |
|||
Neurospora
Ascomycota |
Anticarsia gemmatalisLepidoptera |
Fungi
|
degrading flubendiamide |
2019 |
|||
Arsenophonus
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Intracellular
|
Arsenophonus strain (S-type) negatively affected the insecticide resistance of the host |
2018 |
||
Arsenophonus strain (S-type)
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
with the S-type Arsenophonus significantly decreased host insecticide resistance |
2018 |
|||
Burkholderia sp.
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
Extracellular
|
Susceptible insects became resistant via acquisition of pesticide-degrading symbionts from pesticide-sprayed soil. This association could occur only after two-time-spraying on soil |
2018 |
||
Burkholderia sp.
Pseudomonadota |
Cavelerius saccharivorusHemiptera |
Bacteria
|
Extracellular
|
Gut symbionts showed a pesticide-degrading activity in vivo and in vitro |
2018 |
||
Citrobacter sp.
Pseudomonadota |
Bactrocera dorsalisDiptera |
Bacteria
|
Extracellular
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont |
2018 |
||
Enterococcus
Bacillota |
Plutella xylostellaLepidoptera |
Bacteria
|
Extracellular
|
enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella |
2018 |
||
Enterococcus sp.
Bacillota |
Plutella xylostellaLepidoptera |
Bacteria
|
Extracellular
|
enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella |
2018 |
||
Serratia sp.
Pseudomonadota |
Plutella xylostellaLepidoptera |
Bacteria
|
Extracellular
|
decreased resistance to the widely used insecticide, chlorpyrifos, in P. xylostella |
2018 |
||
Burkholderia
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
degrading insecticide fenitrothion (MEP) |
2018 |
|||
Lactobacillus plantarum
Bacillota |
Drosophila melanogasterDiptera |
Bacteria
|
Extracellular
|
may be beneficial in reducing in vivo Chlorpyrifos (CP) toxicity |
2018 |
||
Citrobacter freundii
Pseudomonadota |
Bactrocera dorsalisDiptera |
Bacteria
|
enhances resistance to the organophosphate insecticide trichlorphon |
2017 |
|||
Arthrobacter nicotinovorans
Actinomycetota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn |
2017 |
|||
Delftia lacustris
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Intracellular
|
may influence the metabolization of pesticides in insects |
2017 |
||
Enterococcus casseliflavus
Bacillota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Intracellular
|
may influence the metabolization of pesticides in insects |
2017 |
||
Enterococcus mundtii
Bacillota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
Intracellular
|
may influence the metabolization of pesticides in insects |
2017 |