Functional Symbionts
101 recordsRecords of insect symbionts with verified function from literatures.
Search by:
- • Host species (e.g., "Drosophila")
- • Symbiont name (e.g., "Wolbachia")
- • Function (e.g., "B vitamins")
- • Function Tag (e.g., "Nitrogen fixation")
- • Phylum (e.g., "Proteobacteria")
Host Insect | Classification | Localization | Function | Function Tags | Year | Edit | |
---|---|---|---|---|---|---|---|
Enterobacter sp.
Pseudomonadota |
Sitophilus oryzaeColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Enterococcus faecalis
Bacillota |
Cryptolestes ferrugineusColeoptera |
Bacteria
|
Extracellular
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro. |
2022 |
||
Rickettsia
Pseudomonadota |
Bemisia tabaciHemiptera |
Bacteria
|
Extracellular
|
Rickettsia infection improved its host’s fitness by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic fungus (Akanthomyces attenuatus) and parasitoid (Encarsia formosa) |
2022 |
||
Penicillium
Ascomycota |
Spodoptera frugiperdaLepidoptera |
Fungi
|
Extracellular
|
Penicillium is well known for its ability to degrade cellulose, hemicellulose, and lignin |
2022 |
||
Wolbachia
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance |
2021 |
|||
Burkholderia symbiont strain SFA1
Pseudomonadota |
Riptortus pedestrisHemiptera |
Bacteria
|
degrade this insecticide through a horizontally acquired insecticide-degrading enzyme into the non-insecticidal |
2021 |
|||
Asaia
Pseudomonadota |
Ceratitis capitataDiptera |
Bacteria
|
a possible involvement of Asaia in determining resistance to insecticides |
2021 |
|||
Ceratitis capitataDiptera |
Bacteria
|
a possible involvement of Asaia in determining resistance to insecticides |
2021 |
||||
Candidatus Hamiltonella defensa
Pseudomonadota |
Sitobion miscanthiHemiptera |
Bacteria
|
Extracellular
|
infection with H. defensa reduced aphid susceptibility to the investigated insecticides at low concentrations, potentially by increasing detoxification enzyme activity in the host |
2021 |
||
Wolbachia
Pseudomonadota |
Nilaparvata lugensHemiptera |
Bacteria
|
Intracellular
|
enhances expression of P450 NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress |
2021 |
||
Acinetobacter soli
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
2020 |
|||
Pseudomonas japonica
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
2020 |
|||
Serratia marcescens
Pseudomonadota |
Spodoptera frugiperdaLepidoptera |
Bacteria
|
degradation of flubendiamide and chlorantraniliprole |
2020 |
|||
Bombyx moriLepidoptera |
Bacteria
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide. |
2020 |
||||
Stenotrophomonas
Pseudomonadota |
Bombyx moriLepidoptera |
Bacteria
|
Extracellular
|
Insecticide resistance against the toxic effects of organophosphate insecticides |
2020 |
||
Pantoea
Pseudomonadota |
Psylliodes chrysocephalaColeoptera |
Bacteria
|
contribute to detoxification of toxic isothiocyanates |
2020 |
|||
Buchnera aphidicola
Pseudomonadota |
Aphis gossypiiHemiptera |
Bacteria
|
Intracellular
|
increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid |
2020 |
||
Rickettsia
Pseudomonadota |
Bemisia tabaciHemiptera |
Bacteria
|
Intracellular
|
There was a significant negative correlation between drug resistance and infection rate of Rickettsia for imidacloprid and thiamethoxam |
2020 |
||
Acremonium sclerotigenum
Ascomycota |
Diaphorina citriHemiptera |
Fungi
|
Extracellular
|
affected ACP resistance to imidacloprid and thiamethoxam |
2020 |
||
Golubevia pallescens
Basidiomycota |
Diaphorina citriHemiptera |
Fungi
|
Extracellular
|
affected ACP resistance to imidacloprid and thiamethoxam |
2020 |