SRR6130760 - Drosophila suzukii

Basic Information

Run: SRR6130760

Assay Type: WGS

Bioproject: PRJNA412893

Biosample: SAMN07731425

Bytes: 214790392

Center Name: CORNELL UNIVERSITY

Sequencing Information

Instrument: Illumina MiSeq

Library Layout: PAIRED

Library Selection: PCR

Platform: ILLUMINA

Geographic Information

Country: USA

Continent: North America

Location Name: USA: Ithaca NY

Latitude/Longitude: 42.47 N 76.59 W

Sample Information

Host: Drosophila suzukii

Isolation: RPE.m.1.1

Biosample Model: Metagenome or environmental

Collection Date: 2016-09

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Zymobacter palmae
RISB1324
Vespa mandarinia
Order: Hymenoptera
None
84.74%
89.7
Wolbachia
RISB0189
Drosophila suzukii
Order: Diptera
Wolbachia positively affected female fecundity and offspring mass after a diet shift
0.32%
32.0
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.08%
31.2
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.08%
30.1
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
2.99%
18.0
Enterobacter ludwigii
RISB1223
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.06%
17.8
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.04%
17.6
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
1.99%
17.0
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
2.99%
16.6
Enterobacter ludwigii
RISB1397
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.06%
16.4
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.04%
16.0
Raoultella sp. XY-1
RISB1575
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.05%
15.8
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.56%
15.6
Wolbachia
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.32%
15.3
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
2.99%
15.3
Wolbachia
RISB0779
Drosophila melanogaster
Order: Diptera
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
0.32%
15.1
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.04%
15.0
Serratia symbiotica
RISB0055
Episyrphus balteatus
Order: Diptera
None
0.04%
15.0
Comamonas
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.54%
13.0
Sodalis
RISB2256
Glossina palpalis
Order: Diptera
flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont.
0.04%
12.7
Staphylococcus
RISB0427
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
0.09%
12.5
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.04%
12.2
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.99%
12.0
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.08%
11.7
Sodalis
RISB2471
Glossina morsitans
Order: Diptera
retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine
0.04%
11.5
Sodalis
RISB2531
Glossina spp.
Order: Diptera
quorum sensing primes the oxidative stress response of endosymbiont
0.04%
11.4
Rickettsia
RISB1273
Culicoides impunctatus
Order: Diptera
possible symbiont-virus interactions
0.33%
11.1
Comamonas
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.54%
10.8
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.04%
10.6
Comamonas
RISB2020
Bactrocera dorsalis
Order: Diptera
None
0.54%
10.5
Staphylococcus
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.09%
10.4
Rickettsia
RISB0588
Culicoides impunctatus
Order: Diptera
None
0.33%
10.3
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.04%
10.0
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.04%
10.0
Proteus
RISB0054
Episyrphus balteatus
Order: Diptera
None
0.04%
10.0
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.03%
10.0
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.56%
9.9
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.04%
9.8
Serratia symbiotica
RISB0179
Acyrthosiphon pisum
Order: Hemiptera
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
0.04%
9.6
Enterobacter ludwigii
RISB1543
Helicoverpa zea
Order: Lepidoptera
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
0.06%
8.7
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.15%
8.5
Raoultella sp. XY-1
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.05%
8.4
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.56%
8.3
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
1.99%
8.0
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.04%
7.6
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.15%
7.4
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.15%
7.1
Pseudomonas aeruginosa
RISB0364
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.19%
7.0
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.59%
5.6
Rickettsia
RISB0940
Bemisia tabaci
Order: Hemiptera
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host
0.33%
5.3
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.30%
5.3
Candidatus Palibaumannia cicadellinicola
RISB1594
Graphocephala coccinea
Order: Hemiptera
None
0.10%
5.1
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.09%
5.1
Zymomonas mobilis
RISB1326
Vespa mandarinia
Order: Hymenoptera
None
0.06%
5.1
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.30%
4.6
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.30%
4.6
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.09%
3.9
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
2.27%
3.7
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.48%
2.8
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.04%
2.7
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.48%
2.6
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.48%
2.5
Sphingomonas
RISB0420
Aphis gossypii
Order: Hemiptera
Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction
0.12%
2.1
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.09%
2.0
Sphingomonas
RISB1307
Aphis gossypii
Order: Hemiptera
have been previously described in associations with phloem-feeding insects, in low abundances
0.12%
2.0
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.05%
1.9
Sphingomonas
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.12%
1.8
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.05%
1.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.07%
1.4
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.03%
1.3
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.04%
1.1
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.04%
0.9
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.04%
0.4

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR6130760
204.8 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table