SRR6130755 - Drosophila suzukii
Basic Information
Run: SRR6130755
Assay Type: WGS
Bioproject: PRJNA412893
Biosample: SAMN07731419
Bytes: 240709265
Center Name: CORNELL UNIVERSITY
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: PAIRED
Library Selection: PCR
Platform: ILLUMINA
Geographic Information
Country: USA
Continent: North America
Location Name: USA: Ithaca NY
Latitude/Longitude: 42.47 N 76.59 W
Sample Information
Host: Drosophila suzukii
Isolation: RPE.f.1.1
Biosample Model: Metagenome or environmental
Collection Date: 2016-09
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Gluconobacter
Host Order Match
Host Species Match
|
RISB1882 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
18.29% |
49.5
|
Gluconobacter
Host Order Match
Host Species Match
|
RISB0876 |
Drosophila suzukii
Order: Diptera
|
None
|
18.29% |
48.3
|
Wolbachia
Host Order Match
Host Species Match
|
RISB0189 |
Drosophila suzukii
Order: Diptera
|
Wolbachia positively affected female fecundity and offspring mass after a diet shift
|
1.29% |
33.0
|
Gluconobacter
Host Order Match
|
RISB0016 |
Aedes aegypti
Order: Diptera
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
|
18.29% |
29.9
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
24.16% |
27.9
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
24.16% |
26.1
|
Acetobacter
Host Order Match
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
5.74% |
20.7
|
Acetobacter
Host Order Match
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
5.74% |
19.3
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
1.17% |
18.7
|
Acetobacter
Host Order Match
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
5.74% |
18.0
|
Enterobacter ludwigii
Species-level Match
Host Order Match
|
RISB1223 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.20% |
17.9
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
1.17% |
17.2
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1771 |
Muscidae
Order: Diptera
|
None
|
2.12% |
17.1
|
Enterobacter ludwigii
Species-level Match
Host Order Match
|
RISB1397 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.20% |
16.5
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
1.53% |
16.5
|
Klebsiella sp. P1954
Species-level Match
Host Order Match
|
RISB0917 |
Aedes aegypti
Order: Diptera
|
could impact larval development (e.g., spermidine)
|
0.50% |
16.5
|
Comamonas
Host Order Match
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
3.86% |
16.4
|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
1.29% |
16.3
|
Klebsiella sp. P1954
Species-level Match
Host Order Match
|
RISB1573 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.50% |
16.2
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
1.29% |
16.1
|
Pseudomonas
Host Order Match
|
RISB0425 |
Anopheles sinensis
Order: Diptera
|
Pseudomonas is the most prevalent microbiota in the Plasmodium-negative groups and protects mosquitoes from the invasion of malaria parasites.A low proportion of the Psuedomonas population of microbiome profiles in the hyperendemic areas, indicating that there might be some factors such as malaria parasites to disturb the balance of microbiota
|
0.46% |
15.5
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB0055 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.19% |
15.2
|
Brevundimonas sp. Bb-A
Species-level Match
Host Order Match
|
RISB1703 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.09% |
15.1
|
Staphylococcus
Host Order Match
|
RISB0427 |
Anopheles sinensis
Order: Diptera
|
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
|
1.97% |
14.4
|
Comamonas
Host Order Match
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
3.86% |
14.1
|
Pseudomonas
Host Order Match
|
RISB2061 |
Scaptomyza nigrita
Order: Diptera
|
increased S. nigrita herbivory in bittercress,adult S. nigrita feeding was promoted by a P. fluorescens group strain, while larval feeding was promoted by a P. syringae group strain
|
0.46% |
14.1
|
Comamonas
Host Order Match
|
RISB2020 |
Bactrocera dorsalis
Order: Diptera
|
None
|
3.86% |
13.9
|
Pseudomonas
Host Order Match
|
RISB1512 |
Delia lupini
Order: Diptera
|
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
|
0.46% |
13.7
|
Methylobacterium
Host Order Match
|
RISB1440 |
Lutzomyia evansi
Order: Diptera
|
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
|
0.19% |
13.5
|
Sodalis
Host Order Match
|
RISB2256 |
Glossina palpalis
Order: Diptera
|
flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont.
|
0.16% |
12.8
|
Staphylococcus
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
1.97% |
12.3
|
Sodalis
Host Order Match
|
RISB2471 |
Glossina morsitans
Order: Diptera
|
retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine
|
0.16% |
11.7
|
Leuconostoc sp. C2
Species-level Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
5.19% |
11.6
|
Sodalis
Host Order Match
|
RISB2531 |
Glossina spp.
Order: Diptera
|
quorum sensing primes the oxidative stress response of endosymbiont
|
0.16% |
11.5
|
Rickettsia
Host Order Match
|
RISB1273 |
Culicoides impunctatus
Order: Diptera
|
possible symbiont-virus interactions
|
0.54% |
11.3
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.53% |
10.9
|
Chryseobacterium
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.11% |
10.7
|
Rickettsia
Host Order Match
|
RISB0588 |
Culicoides impunctatus
Order: Diptera
|
None
|
0.54% |
10.5
|
Chryseobacterium
Host Order Match
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.11% |
10.4
|
Variovorax
Host Order Match
|
RISB1712 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.22% |
10.2
|
Serratia symbiotica
Species-level Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.19% |
10.2
|
Chryseobacterium
Host Order Match
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.11% |
10.1
|
Serratia symbiotica
Species-level Match
|
RISB0179 |
Acyrthosiphon pisum
Order: Hemiptera
|
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
|
0.19% |
9.7
|
Clostridium sp. DL-VIII
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.04% |
9.3
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.53% |
9.3
|
Streptomyces sp. ICC4
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.10% |
9.1
|
Enterobacter ludwigii
Species-level Match
|
RISB1543 |
Helicoverpa zea
Order: Lepidoptera
|
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
|
0.20% |
8.8
|
Streptomyces sp. ICC4
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.10% |
8.8
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
1.17% |
8.8
|
Lactobacillus sp. PV034
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.06% |
8.4
|
Streptomyces sp. ICC4
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
0.10% |
7.4
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
2.13% |
7.1
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
1.97% |
7.0
|
Rickettsia
|
RISB0940 |
Bemisia tabaci
Order: Hemiptera
|
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host
|
0.54% |
5.5
|
Burkholderia
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.41% |
5.4
|
Zymomonas mobilis
Species-level Match
|
RISB1326 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.35% |
5.4
|
Burkholderia
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.41% |
4.7
|
Burkholderia
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.41% |
4.7
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.08% |
2.5
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.08% |
2.2
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.13% |
1.9
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.13% |
1.8
|
Variovorax
|
RISB2153 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.22% |
1.5
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.09% |
1.5
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.16% |
1.2
|
Methylobacterium
|
RISB2053 |
Atractomorpha sinensis
Order: Orthoptera
|
associated with cellulolytic enzymes
|
0.19% |
0.9
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.13% |
0.9
|
Methylobacterium
|
RISB2340 |
Saturniidae
Order: Lepidoptera
|
Nitrogen fixation
|
0.19% |
0.5
|
Fructobacillus
|
RISB0638 |
Formica
Order: Hymenoptera
|
None
|
0.30% |
0.3
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.09% |
0.1
|
Paraburkholderia
|
RISB0125 |
Physopelta gutta
Order: Hemiptera
|
None
|
0.06% |
0.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.