SRR6130745 - Drosophila suzukii

Basic Information

Run: SRR6130745

Assay Type: WGS

Bioproject: PRJNA412893

Biosample: SAMN07731423

Bytes: 141490055

Center Name: CORNELL UNIVERSITY

Sequencing Information

Instrument: Illumina MiSeq

Library Layout: PAIRED

Library Selection: PCR

Platform: ILLUMINA

Geographic Information

Country: USA

Continent: North America

Location Name: USA: Ithaca NY

Latitude/Longitude: 42.47 N 76.59 W

Sample Information

Host: Drosophila suzukii

Isolation: RPE.f.2.2

Biosample Model: Metagenome or environmental

Collection Date: 2016-11

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Rickettsia rickettsii
RISB1903
Bemisia tabaci
Order: Hemiptera
None
25.55%
30.6
Comamonas
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
7.98%
20.5
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.13%
18.8
Comamonas
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
7.98%
18.3
Comamonas
RISB2020
Bactrocera dorsalis
Order: Diptera
None
7.98%
18.0
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.13%
17.8
Enterobacter ludwigii
RISB1223
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.09%
17.8
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.12%
17.7
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
13.87%
17.6
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
1.95%
17.0
Enterobacter ludwigii
RISB1397
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.09%
16.4
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
1.16%
16.2
Serratia marcescens
RISB0096
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.13%
16.1
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.12%
16.1
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.92%
15.9
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
13.87%
15.8
Brevundimonas sp. Bb-A
RISB1703
Phlebotomus papatasi
Order: Diptera
None
0.54%
15.5
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
1.95%
15.5
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.31%
15.3
Bacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.12%
15.1
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
1.95%
14.2
Rhodococcus
RISB0775
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.45%
13.7
Bacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.12%
13.4
Staphylococcus
RISB0427
Anopheles sinensis
Order: Diptera
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
0.82%
13.3
Sodalis
RISB2256
Glossina palpalis
Order: Diptera
flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont.
0.07%
12.8
Lactobacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.31%
12.6
Bacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.12%
12.4
Lactobacillus
RISB1714
Drosophila melanogaster
Order: Diptera
It has the potential to reduce IMI-induced susceptibility to infection.
0.31%
11.7
Sodalis
RISB2471
Glossina morsitans
Order: Diptera
retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine
0.07%
11.6
Sodalis
RISB2531
Glossina spp.
Order: Diptera
quorum sensing primes the oxidative stress response of endosymbiont
0.07%
11.4
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.16%
11.2
Staphylococcus
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.82%
11.1
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.38%
10.4
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.92%
10.2
Pseudomonas sp. S49
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.39%
10.2
Clostridium sp. JN-9
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.10%
9.3
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.19%
9.0
Pseudomonas sp. S49
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.39%
8.7
Enterobacter ludwigii
RISB1543
Helicoverpa zea
Order: Lepidoptera
two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars
0.09%
8.7
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.92%
8.6
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.12%
7.7
Pseudomonas aeruginosa
RISB0364
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.74%
7.5
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
1.16%
7.2
Sphingomonas sp. C3-2
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.10%
6.7
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
1.01%
6.0
Staphylococcus
RISB0945
Callosobruchus maculatus
Order: Coleoptera
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
0.82%
5.8
Rickettsia sp. MEAM1 (Bemisia tabaci)
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.33%
5.7
Burkholderia
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.31%
5.3
Rickettsia canadensis
RISB1898
Bemisia tabaci
Order: Hemiptera
None
0.20%
5.2
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.09%
5.1
Burkholderia
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.31%
4.6
Burkholderia
RISB0402
Riptortus pedestris
Order: Hemiptera
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
0.31%
4.6
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.92%
2.7
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.92%
2.6
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.11%
2.5
Rhodococcus
RISB0430
Rhodnius prolixus
Order: Hemiptera
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
0.45%
2.4
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.81%
2.2
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.38%
1.7
Corynebacterium
RISB2360
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.92%
1.7
Rhodococcus
RISB1087
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.45%
1.5
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.13%
1.2
Metabacillus
RISB0902
Myzus persicae
Order: Hemiptera
None
0.25%
0.3
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.15%
0.2
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.11%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR6130745
134.9 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table