SRR6033690 - Nomia

Basic Information

Run: SRR6033690

Assay Type: WGS

Bioproject: PRJNA407112

Biosample: SAMN07634942

Bytes: 68246310

Center Name: COLUMBIA

Sequencing Information

Instrument: Illumina MiSeq

Library Layout: SINGLE

Library Selection: RANDOM PCR

Platform: ILLUMINA

Geographic Information

Country: USA

Continent: North America

Location Name: USA: Washington

Latitude/Longitude: 46.0177 N 118.6975 W

Sample Information

Host: Nomia

Isolation: Whole body homogenate

Biosample Model: Metagenome or environmental

Collection Date: 2015-08-01

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Pseudomonas sp. CIP-10
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
6.13%
21.1
Gilliamella apicola
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.09%
20.1
Bifidobacterium asteroides
RISB0174
Apis mellifera
Order: Hymenoptera
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
0.06%
20.1
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
1.06%
20.0
Streptomyces sp. RLB3-5
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.88%
19.8
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
1.06%
19.8
Stenotrophomonas maltophilia
RISB2004
Trichogramma chilonis
Order: Hymenoptera
could significantly increase both female count
2.09%
18.0
Snodgrassella alvi
RISB1423
Bombus spp.
Order: Hymenoptera
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
0.12%
17.0
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
6.13%
16.0
Snodgrassella alvi
RISB1947
Apis cerana
Order: Hymenoptera
None
0.12%
15.1
Gilliamella apicola
RISB1945
Apis cerana
Order: Hymenoptera
None
0.09%
15.1
Lactobacillus apis
RISB1556
Apis florea
Order: Hymenoptera
None
0.03%
15.0
Pseudomonas sp. FP2034
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
0.01%
15.0
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
4.25%
14.3
Nocardia
RISB0947
Acromyrmex
Order: Hymenoptera
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
0.02%
12.4
Rickettsia
RISB0257
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.02%
12.3
Nocardia
RISB1218
Mycocepurus smithii
Order: Hymenoptera
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
0.02%
12.1
Burkholderia
RISB2149
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.49%
11.8
Rickettsia
RISB1970
Leptocybe invasa
Order: Hymenoptera
Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa
0.02%
11.5
Rickettsia
RISB2475
Pnigalio soemius
Order: Hymenoptera
cause parthenogenetic reproduction in the parasitoid wasp
0.02%
11.2
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.11%
11.1
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
2.09%
11.1
Burkholderia
RISB2101
Formica exsecta
Order: Hymenoptera
produce antibiotics
0.49%
10.9
Burkholderia
RISB2580
Tetraponera binghami
Order: Hymenoptera
Nitrogen fixation
0.49%
10.8
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.76%
10.8
Bacillus subtilis
RISB0481
Bombyx mori
Order: Lepidoptera
B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host; The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota
0.49%
10.5
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
4.25%
10.3
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.14%
10.1
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.11%
10.1
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.78%
10.1
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.03%
10.0
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.01%
10.0
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.76%
10.0
Klebsiella pneumoniae
RISB1994
Diatraea saccharalis
Order: Lepidoptera
possess cellulose degrading activity
4.25%
10.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
2.09%
9.8
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.01%
9.8
Acinetobacter sp. GSS19
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.06%
9.7
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
7.52%
9.5
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
7.52%
9.2
Enterobacter sp. T2
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.76%
9.1
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.02%
9.0
Acinetobacter sp. GSS19
RISB1978
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.06%
8.9
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.01%
8.8
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
7.52%
8.7
Lactobacillus sp. IBH004
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.15%
8.5
Bifidobacterium asteroides
RISB0616
Spodoptera frugiperda
Order: Lepidoptera
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
0.06%
8.5
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.78%
8.5
Arthrobacter sp. ATA002
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.04%
8.3
Arthrobacter sp. Helios
RISB0769
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
8.3
Acinetobacter sp. GSS19
RISB1500
Lymantria dispar
Order: Lepidoptera
Bacteria isolated from a host plant had a glycoside-degrading activity, which enhanced growth of the moth when larvae were fed on a toxin-containing diet
0.06%
8.1
Citrobacter freundii
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.02%
7.9
Citrobacter freundii
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.02%
7.7
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.02%
7.7
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.10%
7.7
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.10%
7.6
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.10%
7.4
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
1.78%
6.8
Corynebacterium sp. Z-1
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.08%
6.7
Sphingomonas sp. AAP5
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.09%
6.7
Sphingomonas sp. NIBR02145
RISB0134
Spodoptera frugiperda
Order: Lepidoptera
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
0.06%
6.7
Staphylococcus hominis
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
1.34%
6.6
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
0.78%
6.6
Staphylococcus hominis
RISB1071
Oryctes rhinoceros
Order: Coleoptera
gut microbe
1.34%
6.6
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
1.29%
6.5
Micrococcus
RISB2276
Ostrinia nubilalis
Order: Lepidoptera
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
4.31%
6.2
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.03%
6.1
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.03%
5.0
Micromonospora harpali
RISB2034
Harpalus sinicus
Order: Coleoptera
None
0.02%
5.0
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
2.27%
3.8
Rhodococcus
RISB0775
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.07%
3.3
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.71%
2.0
Rhodococcus
RISB0430
Rhodnius prolixus
Order: Hemiptera
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
0.07%
2.0
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.25%
1.8
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.41%
1.7
Actinomyces
RISB1234
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.39%
1.7
Rhodococcus
RISB1087
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.07%
1.1
Brevibacterium
RISB0464
Acrida cinerea
Order: Orthoptera
correlated with the hemicellulose digestibility
0.05%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.04%
0.9
Mycobacterium
RISB1156
Nicrophorus concolor
Order: Coleoptera
produces Antimicrobial compounds
0.20%
0.8
Brevibacterium
RISB2359
Bombyx mori
Order: Lepidoptera
producing lipase in a gut environment
0.05%
0.8
Gordonia
RISB1912
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.05%
0.8
Nocardioides
RISB1914
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.03%
0.8
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.78%
0.8
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
0.71%
0.7
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.04%
0.6
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.04%
0.4
Chroococcidiopsis
RISB0487
Ceratitis capitata
Order: Diptera
None
0.11%
0.1
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
0.11%
0.1
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.08%
0.1
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.06%
0.1
Brevibacterium
RISB0897
Myzus persicae
Order: Hemiptera
None
0.05%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR6033690
65.1 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table