SRR6033686 - Apis mellifera
Basic Information
Run: SRR6033686
Assay Type: WGS
Bioproject: PRJNA407112
Biosample: SAMN07634946
Bytes: 64419725
Center Name: COLUMBIA
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: SINGLE
Library Selection: RANDOM PCR
Platform: ILLUMINA
Quality Control Information
Filter Percentage: 0.0086
QC Average Length: 149
Retained Reads: -
Geographic Information
Country: Kenya
Continent: Africa
Location Name: Kenya: Mbita
Latitude/Longitude: 0.4803 S 34.2929 E
Sample Information
Host: Apis mellifera
Isolation: Whole body homogenate
Biosample Model: Metagenome or environmental
Collection Date: 2015-08-01
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
| Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
|---|---|---|---|---|---|
|
Bifidobacterium
Host Order Match
Host Species Match
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.44% |
35.4
|
|
Lactobacillus
Host Order Match
Host Species Match
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.15% |
32.2
|
|
Lactobacillus
Host Order Match
Host Species Match
|
RISB0368 |
Apis mellifera
Order: Hymenoptera
|
increased bee survival after S. marcescens infection, inhibited its proliferation in the gut
|
0.15% |
32.0
|
|
Burkholderia
Host Order Match
Host Species Match
|
RISB2389 |
Apis mellifera
Order: Hymenoptera
|
None
|
1.20% |
31.2
|
|
Lactobacillus
Host Order Match
Host Species Match
|
RISB0615 |
Apis mellifera
Order: Hymenoptera
|
Improve learning and memory performance
|
0.15% |
30.9
|
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
10.21% |
20.2
|
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
10.21% |
16.2
|
|
Klebsiella pneumoniae
Species-level Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
10.21% |
15.9
|
|
Bifidobacterium
Host Order Match
|
RISB0175 |
Apis cerana
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.44% |
15.4
|
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.31% |
15.3
|
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
4.72% |
14.0
|
|
Burkholderia
Host Order Match
|
RISB2149 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
1.20% |
12.5
|
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
4.72% |
12.4
|
|
Burkholderia
Host Order Match
|
RISB2101 |
Formica exsecta
Order: Hymenoptera
|
produce antibiotics
|
1.20% |
11.6
|
|
Acinetobacter
Host Order Match
|
RISB2000 |
Trichogramma chilonis
Order: Hymenoptera
|
could significantly increase both female count
|
0.29% |
11.2
|
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
4.72% |
10.5
|
|
Bifidobacterium
Host Order Match
|
RISB1944 |
Apis cerana
Order: Hymenoptera
|
None
|
0.44% |
10.4
|
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.23% |
10.2
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.31% |
10.1
|
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.08% |
10.1
|
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
4.29% |
9.3
|
|
Bacillus cereus
Species-level Match
|
RISB2489 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.23% |
9.2
|
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.31% |
8.7
|
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.08% |
8.6
|
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.51% |
8.1
|
|
Lactococcus lactis
Species-level Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.08% |
8.1
|
|
Enterococcus faecalis
Species-level Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.51% |
8.1
|
|
Enterococcus faecalis
Species-level Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.51% |
7.9
|
|
Corynebacterium sp. Z-1
Species-level Match
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.73% |
7.4
|
|
Bacillus cereus
Species-level Match
|
RISB2237 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.23% |
7.0
|
|
Staphylococcus epidermidis
Species-level Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
1.24% |
6.5
|
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.09% |
6.1
|
|
Acinetobacter
|
RISB0140 |
Nilaparvata lugens
Order: Hemiptera
|
Acinetobacter can effectively degrade cellulose and harmful substances such as polystyrene and phenol.It can help the short-winged BPH to improve its detoxification ability in harsh environments and adapt to environmental changes at any time.
|
0.29% |
5.1
|
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.09% |
5.1
|
|
Acinetobacter
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.29% |
5.0
|
|
Sphingobacterium
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.16% |
3.5
|
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.98% |
3.0
|
|
Sphingobacterium
|
RISB1226 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.16% |
2.9
|
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.98% |
2.6
|
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.98% |
2.2
|
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.31% |
1.9
|
|
Sphingobacterium
|
RISB1400 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.16% |
1.5
|
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.84% |
1.5
|
|
Actinomyces
|
RISB1234 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.20% |
1.5
|
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.05% |
1.4
|
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.36% |
1.2
|
|
Brevibacterium
|
RISB0464 |
Acrida cinerea
Order: Orthoptera
|
correlated with the hemicellulose digestibility
|
0.15% |
1.1
|
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.36% |
0.9
|
|
Brevibacterium
|
RISB2359 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.15% |
0.9
|
|
Aeromonas
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.36% |
0.7
|
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.28% |
0.3
|
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.27% |
0.3
|
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.20% |
0.2
|
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.17% |
0.2
|
|
Brevibacterium
|
RISB0897 |
Myzus persicae
Order: Hemiptera
|
None
|
0.15% |
0.2
|
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.05% |
0.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.