SRR6033665 - Apis mellifera
Basic Information
Run: SRR6033665
Assay Type: WGS
Bioproject: PRJNA407112
Biosample: SAMN07634930
Bytes: 55958099
Center Name: COLUMBIA
Sequencing Information
Instrument: Illumina MiSeq
Library Layout: SINGLE
Library Selection: RANDOM PCR
Platform: ILLUMINA
Geographic Information
Country: Nicaragua
Continent: North America
Location Name: Nicaragua
Latitude/Longitude: 12.1184 N 86.1224 W
Sample Information
Host: Apis mellifera
Isolation: Whole body homogenate
Biosample Model: Metagenome or environmental
Collection Date: 2015-08-01
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Gilliamella apicola
Species-level Match
Host Order Match
Host Species Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.42% |
40.4
|
Bifidobacterium asteroides
Species-level Match
Host Order Match
Host Species Match
|
RISB0174 |
Apis mellifera
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.05% |
40.1
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
16.95% |
32.0
|
Burkholderia
Host Order Match
Host Species Match
|
RISB2389 |
Apis mellifera
Order: Hymenoptera
|
None
|
0.04% |
30.0
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
16.95% |
26.8
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
16.95% |
25.3
|
Gilliamella apicola
Species-level Match
Host Order Match
|
RISB0177 |
Apis cerana
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.42% |
20.4
|
Bifidobacterium asteroides
Species-level Match
Host Order Match
|
RISB0175 |
Apis cerana
Order: Hymenoptera
|
Bifidobacterium provides complementary demethylation service to promote Gilliamella growth on methylated homogalacturonan, an enriched polysaccharide of pectin. In exchange, Gilliamella shares digestive products with Bifidobacterium, through which a positive interaction is established
|
0.05% |
20.1
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB2004 |
Trichogramma chilonis
Order: Hymenoptera
|
could significantly increase both female count
|
3.83% |
19.8
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.57% |
19.5
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.57% |
19.3
|
Snodgrassella alvi
Species-level Match
Host Order Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
1.94% |
18.8
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
0.57% |
17.9
|
Snodgrassella alvi
Species-level Match
Host Order Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
1.94% |
16.9
|
Lactobacillus apis
Species-level Match
Host Order Match
|
RISB1556 |
Apis florea
Order: Hymenoptera
|
None
|
0.56% |
15.6
|
Gilliamella apicola
Species-level Match
Host Order Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.42% |
15.4
|
Serratia symbiotica
Species-level Match
Host Order Match
|
RISB2331 |
Camponotus japonicus
Order: Hymenoptera
|
None
|
0.04% |
15.0
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
4.41% |
13.7
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
8.45% |
13.5
|
Candidatus Blochmanniella
Host Order Match
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.07% |
13.2
|
Candidatus Blochmanniella
Host Order Match
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.07% |
13.2
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
3.83% |
12.8
|
Candidatus Blochmanniella
Host Order Match
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.07% |
12.8
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
4.41% |
12.1
|
Corynebacterium
Host Order Match
|
RISB1285 |
Aphidius colemani
Order: Hymenoptera
|
Repelling parasitism
|
1.73% |
12.1
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
1.67% |
11.7
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
3.83% |
11.5
|
Burkholderia
Host Order Match
|
RISB2149 |
Osmia bicornis
Order: Hymenoptera
|
may be essential to support Osmia larvae in their nutrient uptake
|
0.04% |
11.3
|
Yersinia
Host Order Match
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.86% |
10.9
|
Bacillus cereus
Species-level Match
|
RISB2161 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.82% |
10.8
|
Enterobacter sp. T2
Species-level Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.64% |
10.6
|
Burkholderia
Host Order Match
|
RISB2101 |
Formica exsecta
Order: Hymenoptera
|
produce antibiotics
|
0.04% |
10.4
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.30% |
10.3
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
4.41% |
10.2
|
Serratia symbiotica
Species-level Match
|
RISB0576 |
Acyrthosiphon pisum
Order: Hemiptera
|
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
|
0.04% |
10.0
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.03% |
10.0
|
Enterobacter sp. T2
Species-level Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.64% |
9.9
|
Bacillus cereus
Species-level Match
|
RISB2489 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.82% |
9.8
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.03% |
9.8
|
Serratia symbiotica
Species-level Match
|
RISB0179 |
Acyrthosiphon pisum
Order: Hemiptera
|
harboring Serratia improved host aphid growth and fecundity but reduced longevity. Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior
|
0.04% |
9.6
|
Enterobacter sp. T2
Species-level Match
|
RISB2221 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.64% |
9.0
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.30% |
8.9
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
0.03% |
8.8
|
Bifidobacterium asteroides
Species-level Match
|
RISB0616 |
Spodoptera frugiperda
Order: Lepidoptera
|
Strain wkB204 grew in the presence of amygdalin as the sole carbon source, suggesting that this strain degrades amygdalin and is not susceptible to the potential byproducts
|
0.05% |
8.5
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.03% |
8.4
|
Lactobacillus sp. IBH004
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.04% |
8.4
|
Morganella morganii
Species-level Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
8.3
|
Lactococcus lactis
Species-level Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.30% |
8.3
|
Acinetobacter guillouiae
Species-level Match
|
RISB0768 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.02% |
8.3
|
Morganella morganii
Species-level Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.03% |
8.0
|
Morganella morganii
Species-level Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.03% |
7.9
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
1.67% |
7.7
|
Bacillus cereus
Species-level Match
|
RISB2237 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.82% |
7.5
|
Klebsiella pneumoniae
Species-level Match
|
RISB1994 |
Diatraea saccharalis
Order: Lepidoptera
|
possess cellulose degrading activity
|
1.67% |
7.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.03% |
7.3
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.03% |
7.0
|
Frischella perrara
Species-level Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.06% |
6.6
|
Staphylococcus epidermidis
Species-level Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
1.01% |
6.2
|
Bombilactobacillus bombi
Species-level Match
|
RISB0617 |
Spodoptera frugiperda
Order: Lepidoptera
|
degrade amygdalin
|
0.04% |
5.4
|
Bosea sp. ANAM02
Species-level Match
|
RISB1702 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.13% |
5.1
|
Enterococcus
|
RISB0728 |
Cnaphalocrocis medinalis
Order: Lepidoptera
|
The core dominant Enterococcus species possessed complete pathways of 14 carbohydrates metabolism, 11 amino acids biosynthesis, and two vitamins synthesize, implied to contribute an essential role to the nutrition intake and development of C. medinalis
|
0.03% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.03% |
4.9
|
Rahnella
|
RISB1623 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.05% |
4.9
|
Enterococcus
|
RISB0476 |
Spodoptera litura
Order: Lepidoptera
|
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
|
0.03% |
4.8
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.14% |
4.4
|
Enterococcus
|
RISB2493 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.03% |
4.0
|
Citrobacter
|
RISB1503 |
Bactrocera dorsalis
Order: Diptera
|
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
|
0.03% |
3.6
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
1.73% |
3.5
|
Citrobacter
|
RISB0192 |
Hermetia illucens
Order: Diptera
|
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
|
0.03% |
3.4
|
Methylobacter
|
RISB1440 |
Lutzomyia evansi
Order: Diptera
|
Methylobacterium can be important in several physiological and metabolic processes in Lu. evansi, which suggests that interactions could occur with Leishmania parasite
|
0.06% |
3.4
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
1.73% |
3.4
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.86% |
3.3
|
Citrobacter
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.03% |
2.9
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.80% |
2.8
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.37% |
2.7
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.80% |
2.4
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.76% |
2.3
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.93% |
2.3
|
Rahnella
|
RISB1800 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.05% |
2.2
|
Rahnella
|
RISB0741 |
Dendroctonus ponderosae
Order: Coleoptera
|
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
|
0.05% |
2.1
|
Micrococcus
|
RISB2276 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.23% |
2.1
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
1.38% |
2.0
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.80% |
2.0
|
Actinomyces
|
RISB1234 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.05% |
1.3
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.14% |
1.2
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.93% |
0.9
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.04% |
0.9
|
Methylobacter
|
RISB2053 |
Atractomorpha sinensis
Order: Orthoptera
|
associated with cellulolytic enzymes
|
0.06% |
0.8
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.04% |
0.6
|
Geobacillus
|
RISB1251 |
Potamobates horvathi
Order: Hemiptera
|
None
|
0.59% |
0.6
|
Methylobacter
|
RISB2340 |
Saturniidae
Order: Lepidoptera
|
Nitrogen fixation
|
0.06% |
0.4
|
Aeromonas
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.04% |
0.4
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.28% |
0.3
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.15% |
0.2
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.14% |
0.1
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.03% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.