SRR6014802 - Lasioglossum albipes
Basic Information
Run: SRR6014802
Assay Type: WGS
Bioproject: PRJNA402054
Biosample: SAMN07615202
Bytes: 48671346
Center Name: PRINCETON UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Switzerland
Continent: Europe
Location Name: Switzerland: Brassus
Latitude/Longitude: 46.635 N 6.267 E
Sample Information
Host: Lasioglossum albipes
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2014
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2342 |
Nasonia giraulti
Order: Hymenoptera
|
Increase mate acceptance of infected females
|
0.93% |
16.8
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB0255 |
Camponotus pennalicus
Order: Hymenoptera
|
None
|
0.93% |
15.9
|
Pseudomonas sp. R84
Species-level Match
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.30% |
15.3
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.93% |
10.9
|
Pseudomonas sp. R84
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.30% |
10.1
|
Erwinia
Host Order Match
|
RISB0403 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.10% |
10.1
|
Sodalis praecaptivus
Species-level Match
|
RISB0122 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
|
0.76% |
9.3
|
Sodalis praecaptivus
Species-level Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.76% |
8.7
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.27% |
8.7
|
Pseudomonas sp. R84
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.30% |
8.6
|
Paenibacillus sp. KS-LC4
Species-level Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.02% |
8.3
|
Paenibacillus sp. KS-LC4
Species-level Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.02% |
6.4
|
Paenibacillus sp. KS-LC4
Species-level Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
5.6
|
Erwinia
|
RISB1777 |
Bactrocera oleae
Order: Diptera
|
a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.
|
0.10% |
5.1
|
Erwinia
|
RISB1851 |
Graphosoma Lineatum
Order: Hemiptera
|
it seems that the symbiotic bacterium of G. lineatum might have vital role in provision of essential nutrients necessary to support host survival, development and fecundity.
|
0.10% |
3.6
|
Tsukamurella
|
RISB1531 |
Hoplothrips carpathicus
Order: Thysanoptera
|
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
|
0.02% |
3.0
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.35% |
2.9
|
Achromobacter
|
RISB1869 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.05% |
0.3
|
Achromobacter
|
RISB0383 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.05% |
0.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.