SRR6014773 - Lasioglossum albipes

Basic Information

Run: SRR6014773

Assay Type: WGS

Bioproject: PRJNA402054

Biosample: SAMN07615198

Bytes: 314393739

Center Name: PRINCETON UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Switzerland

Continent: Europe

Location Name: Switzerland: Brassus

Latitude/Longitude: 46.635 N 6.267 E

Sample Information

Host: Lasioglossum albipes

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2014

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Sodalis praecaptivus
RISB0122
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
24.89%
33.5
Sodalis praecaptivus
RISB1718
Sitophilus zeamais
Order: Coleoptera
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
24.89%
32.9
Candidatus Sodalis pierantonius
RISB2035
Sitophilus oryzae
Order: Coleoptera
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
11.52%
19.9
Candidatus Hamiltonella defensa
RISB2027
Lysiphlebus fabarum
Order: Hymenoptera
symbiont provided strong protection against L. fabarum and Aphidius colemani, but there was no evidence that H. defensa-infected aphids were more resistant to the other parasitoid species
0.02%
18.8
Candidatus Hamiltonella defensa
RISB1958
Aphelinus abdominalis
Order: Hymenoptera
Provides resistance to certain parasitic wasps, such as Aphidius
0.02%
16.3
Candidatus Hamiltonella defensa
RISB1597
Aphelinus glycinis
Order: Hymenoptera
increased progeny and female progeny size of Aphelinus glycinis
0.02%
16.3
Wolbachia pipientis
RISB2342
Nasonia giraulti
Order: Hymenoptera
Increase mate acceptance of infected females
0.24%
16.1
Arsenophonus nasoniae
RISB0428
Nasonia vitripennis
Order: Hymenoptera
male killing
0.46%
15.7
Arsenophonus nasoniae
RISB0366
Pachycrepoideus vindemmiae
Order: Hymenoptera
None
0.46%
15.5
Wolbachia pipientis
RISB0255
Camponotus pennalicus
Order: Hymenoptera
None
0.24%
15.2
Serratia symbiotica
RISB2331
Camponotus japonicus
Order: Hymenoptera
None
0.03%
15.0
Oecophyllibacter saccharovorans
RISB1194
Oecophylla smaragdina
Order: Hymenoptera
None
0.02%
15.0
Formicincola oecophyllae
RISB0578
Oecophylla smaragdina
Order: Hymenoptera
None
0.01%
15.0
Pseudomonas sp. 15A4
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
0.01%
15.0
Xanthomonas
RISB0498
Xylocopa appendiculata
Order: Hymenoptera
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
0.01%
13.8
Xanthomonas
RISB0217
Xylocopa appendiculata
Order: Hymenoptera
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
0.01%
12.0
Neokomagataea
RISB1560
Oecophylla smaragdina
Order: Hymenoptera
may be related with the formic acid production
0.02%
10.9
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.24%
10.2
Serratia marcescens
RISB0120
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
0.17%
10.2
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.08%
10.1
Serratia symbiotica
RISB0576
Acyrthosiphon pisum
Order: Hemiptera
process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola
0.03%
10.0
Pantoea agglomerans
RISB2197
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Pantoea sp. CCBC3-3-1
RISB0118
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
0.01%
10.0
Pseudomonas sp. 15A4
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
9.8
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.13%
9.5
Pantoea ananatis
RISB1671
Spodoptera frugiperda
Order: Lepidoptera
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomatoresponses
0.00%
9.2
Pseudomonas sp. 15A4
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
8.4
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.00%
8.3
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.00%
8.0
Citrobacter freundii complex sp. CFNIH2
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
0.01%
7.9
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.13%
7.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.00%
7.8
Citrobacter freundii complex sp. CFNIH2
RISB0127
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.01%
7.7
Citrobacter freundii complex sp. CFNIH2
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.01%
7.7
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.01%
6.4
Erwinia sp. HDF1-3R
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.01%
6.4
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.08%
6.1
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
0.13%
6.0
Rickettsia sp. MEAM1 (Bemisia tabaci)
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.55%
6.0
Klebsiella pneumoniae
RISB1994
Diatraea saccharalis
Order: Lepidoptera
possess cellulose degrading activity
0.08%
5.8
Erwinia sp. HDF1-3R
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.01%
5.6
Rickettsia sp. Oklahoma-10
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.01%
5.4
Rickettsia bellii
RISB1897
Bemisia tabaci
Order: Hemiptera
None
0.20%
5.2
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.10%
5.1
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.08%
5.1
Enterobacter hormaechei
RISB1331
Zeugodacus cucurbitae
Order: Diptera
None
0.02%
5.0
Candidatus Kirkpatrickella diaphorinae
RISB0222
Diaphorina citri
Order: Hemiptera
None
0.01%
5.0
Candidatus Fukatsuia symbiotica
RISB1630
Lachninae
Order: Hemiptera
None
0.00%
5.0
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.00%
5.0
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.10%
3.7
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.00%
3.4
Symbiopectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.02%
3.4
Raoultella
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
3.4
Asaia
RISB1315
Sogatella furcifera
Order: Hemiptera
infected WBPH were of shorter nymphal duration and heavier adult weight. Asaia sp. plays a role in improving WBPH fitness through involvement in host’s nutrient supply
0.00%
3.3
Rhodococcus
RISB0775
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
3.3
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.10%
2.4
Rhodococcus
RISB0430
Rhodnius prolixus
Order: Hemiptera
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
0.01%
2.0
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.04%
1.9
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.05%
1.7
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.04%
1.5
Raoultella
RISB1672
Spodoptera frugiperda
Order: Lepidoptera
downregulated POX but upregulated trypsin PI in this plant species
0.01%
1.3
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.05%
1.2
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.01%
1.2
Raoultella
RISB1007
Monochamus alternatus
Order: Coleoptera
may help M. alternatus degrade cellulose and pinene
0.01%
1.0
Rhodococcus
RISB1087
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.01%
1.0
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
0.3
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.05%
0.1
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.01%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR6014773
299.8 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table