SRR6014700 - Lasioglossum albipes

Basic Information

Run: SRR6014700

Assay Type: WGS

Bioproject: PRJNA402054

Biosample: SAMN07615252

Bytes: 156255448

Center Name: PRINCETON UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2000

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: France

Continent: Europe

Location Name: France: Rimont

Latitude/Longitude: 43.017 N 1.282 E

Sample Information

Host: Lasioglossum albipes

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2014

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Wolbachia pipientis
RISB2342
Nasonia giraulti
Order: Hymenoptera
Increase mate acceptance of infected females
2.23%
18.1
Wolbachia pipientis
RISB0255
Camponotus pennalicus
Order: Hymenoptera
None
2.23%
17.2
Apilactobacillus kunkeei
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.01%
17.1
Oecophyllibacter saccharovorans
RISB1194
Oecophylla smaragdina
Order: Hymenoptera
None
0.01%
15.0
Pseudomonas sp. KU26590
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
0.01%
15.0
Rickettsia
RISB0257
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.11%
12.4
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
2.23%
12.2
Rickettsia
RISB1970
Leptocybe invasa
Order: Hymenoptera
Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa
0.11%
11.6
Rickettsia
RISB2475
Pnigalio soemius
Order: Hymenoptera
cause parthenogenetic reproduction in the parasitoid wasp
0.11%
11.3
Neokomagataea
RISB1560
Oecophylla smaragdina
Order: Hymenoptera
may be related with the formic acid production
0.01%
10.9
Fructobacillus
RISB0638
Formica
Order: Hymenoptera
None
0.39%
10.4
Pantoea agglomerans
RISB2197
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.02%
10.0
Pseudomonas sp. KU26590
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.01%
9.8
Pseudomonas sp. KU26590
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
8.4
Pantoea agglomerans
RISB2579
Schistocerca gregaria
Order: Orthoptera
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
0.02%
7.1
Pantoea agglomerans
RISB0379
Frankliniella occidentalis
Order: Thysanoptera
gut symbionts are required for their development
0.02%
6.0
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.02%
5.0
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.02%
3.6
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.02%
2.3
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.03%
1.7
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.03%
1.2
Fructobacillus
RISB1250
Platygerris assimetricus
Order: Hemiptera
None
0.39%
0.4
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.02%
0.3
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.03%
0.0
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.02%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR6014700
149.0 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table