SRR6014552 - Lasioglossum albipes
Basic Information
Run: SRR6014552
Assay Type: WGS
Bioproject: PRJNA402054
Biosample: SAMN07615286
Bytes: 74512259
Center Name: PRINCETON UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: France
Continent: Europe
Location Name: France: Vosges
Latitude/Longitude: 48.165 N 6.933 E
Sample Information
Host: Lasioglossum albipes
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2014
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2342 |
Nasonia giraulti
Order: Hymenoptera
|
Increase mate acceptance of infected females
|
2.64% |
18.5
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB0255 |
Camponotus pennalicus
Order: Hymenoptera
|
None
|
2.64% |
17.6
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
2.64% |
12.6
|
Rickettsia
Host Order Match
|
RISB0257 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.14% |
12.4
|
Rickettsia
Host Order Match
|
RISB1970 |
Leptocybe invasa
Order: Hymenoptera
|
Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa
|
0.14% |
11.6
|
Rickettsia
Host Order Match
|
RISB2475 |
Pnigalio soemius
Order: Hymenoptera
|
cause parthenogenetic reproduction in the parasitoid wasp
|
0.14% |
11.3
|
Sodalis praecaptivus
Species-level Match
|
RISB0122 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
|
0.11% |
8.7
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.05% |
8.5
|
Sodalis praecaptivus
Species-level Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.11% |
8.1
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.