SRR6014528 - Lasioglossum albipes
Basic Information
Run: SRR6014528
Assay Type: WGS
Bioproject: PRJNA402054
Biosample: SAMN07615219
Bytes: 90730466
Center Name: PRINCETON UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: France
Continent: Europe
Location Name: France: Dordogne
Latitude/Longitude: 44.843 N 1.306 E
Sample Information
Host: Lasioglossum albipes
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2014
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2342 |
Nasonia giraulti
Order: Hymenoptera
|
Increase mate acceptance of infected females
|
0.76% |
16.6
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB0255 |
Camponotus pennalicus
Order: Hymenoptera
|
None
|
0.76% |
15.8
|
Pseudomonas
Host Order Match
|
RISB0085 |
Osmia cornifrons
Order: Hymenoptera
|
this bacterium has been shown to contribute to the synthesis of a defensive toxin in the beetle, Paederus fuscipes, and promotes arginine metabolism under in vitro conditions
|
0.09% |
13.6
|
Pseudomonas
Host Order Match
|
RISB2003 |
Trichogramma chilonis
Order: Hymenoptera
|
could significantly increase both female count
|
0.09% |
11.0
|
Neokomagataea
Host Order Match
|
RISB1560 |
Oecophylla smaragdina
Order: Hymenoptera
|
may be related with the formic acid production
|
0.02% |
10.9
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.76% |
10.8
|
Pseudomonas
Host Order Match
|
RISB1564 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.09% |
10.1
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.04% |
10.0
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.04% |
7.1
|
Sphingomonas sp. PAMC26645
Species-level Match
|
RISB0134 |
Spodoptera frugiperda
Order: Lepidoptera
|
provide a protective effect to against chlorantraniliprole stress to S. frugiperda
|
0.02% |
6.7
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.04% |
6.0
|
Asaia
|
RISB0854 |
Anopheles stephensi
Order: Diptera
|
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
|
0.88% |
5.9
|
Rickettsia sp. MEAM1 (Bemisia tabaci)
Species-level Match
|
RISB0704 |
Aphis craccivora
Order: Hemiptera
|
facultative symbiont
|
0.06% |
5.5
|
Acetobacter
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.05% |
5.1
|
Rickettsia bellii
Species-level Match
|
RISB1897 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.04% |
5.0
|
Erwinia aphidicola
Species-level Match
|
RISB1705 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.04% |
5.0
|
Candidatus Kirkpatrickella diaphorinae
Species-level Match
|
RISB0222 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Asaia
|
RISB0014 |
Aedes aegypti
Order: Diptera
|
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
|
0.88% |
4.2
|
Asaia
|
RISB1315 |
Sogatella furcifera
Order: Hemiptera
|
infected WBPH were of shorter nymphal duration and heavier adult weight. Asaia sp. plays a role in improving WBPH fitness through involvement in host’s nutrient supply
|
0.88% |
4.2
|
Acetobacter
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
0.05% |
3.6
|
Acetobacter
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.05% |
2.3
|
Gluconobacter
|
RISB0016 |
Aedes aegypti
Order: Diptera
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
|
0.11% |
1.8
|
Gluconobacter
|
RISB1882 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.11% |
1.3
|
Komagataeibacter
|
RISB1883 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.04% |
1.2
|
Achromobacter
|
RISB1869 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.03% |
0.3
|
Gluconobacter
|
RISB0876 |
Drosophila suzukii
Order: Diptera
|
None
|
0.11% |
0.1
|
Achromobacter
|
RISB0383 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.