SRR6014518 - Lasioglossum albipes
Basic Information
Run: SRR6014518
Assay Type: WGS
Bioproject: PRJNA402054
Biosample: SAMN07615176
Bytes: 66293568
Center Name: PRINCETON UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: France
Continent: Europe
Location Name: France: Calais
Latitude/Longitude: 50.908 N 1.805 E
Sample Information
Host: Lasioglossum albipes
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2014
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB2342 |
Nasonia giraulti
Order: Hymenoptera
|
Increase mate acceptance of infected females
|
1.72% |
17.6
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB0255 |
Camponotus pennalicus
Order: Hymenoptera
|
None
|
1.72% |
16.7
|
Oecophyllibacter saccharovorans
Species-level Match
Host Order Match
|
RISB1194 |
Oecophylla smaragdina
Order: Hymenoptera
|
None
|
0.06% |
15.1
|
Formicincola oecophyllae
Species-level Match
Host Order Match
|
RISB0578 |
Oecophylla smaragdina
Order: Hymenoptera
|
None
|
0.03% |
15.0
|
Wolbachia pipientis
Species-level Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
1.72% |
11.7
|
Neokomagataea
Host Order Match
|
RISB1560 |
Oecophylla smaragdina
Order: Hymenoptera
|
may be related with the formic acid production
|
0.05% |
11.0
|
Pantoea agglomerans
Species-level Match
|
RISB2197 |
Termitidae
Order: Blattodea
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.09% |
10.1
|
Lactococcus lactis
Species-level Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.07% |
10.1
|
Sodalis praecaptivus
Species-level Match
|
RISB0122 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
|
0.19% |
8.8
|
Lactococcus lactis
Species-level Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.07% |
8.6
|
Candidatus Sodalis pierantonius
Species-level Match
|
RISB2035 |
Sitophilus oryzae
Order: Coleoptera
|
endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development
|
0.05% |
8.5
|
Sodalis praecaptivus
Species-level Match
|
RISB1718 |
Sitophilus zeamais
Order: Coleoptera
|
we investigated the role of a quorum sensing(QS ) system in S. praecaptivus and found that it negatively regulates a potent insect-killing phenotype
|
0.19% |
8.2
|
Lactococcus lactis
Species-level Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.07% |
8.1
|
Pantoea agglomerans
Species-level Match
|
RISB2579 |
Schistocerca gregaria
Order: Orthoptera
|
produces an antifungal and antibacterial molecule serving as antimicrobial defense against gut pathogens
|
0.09% |
7.2
|
Pantoea agglomerans
Species-level Match
|
RISB0379 |
Frankliniella occidentalis
Order: Thysanoptera
|
gut symbionts are required for their development
|
0.09% |
6.1
|
Acetobacter
|
RISB1865 |
Drosophila melanogaster
Order: Diptera
|
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
|
0.31% |
5.3
|
Candidatus Kirkpatrickella diaphorinae
Species-level Match
|
RISB0222 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.03% |
5.0
|
Asaia
|
RISB0854 |
Anopheles stephensi
Order: Diptera
|
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
|
0.03% |
5.0
|
Acetobacter
|
RISB0961 |
Drosophila melanogaster
Order: Diptera
|
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
|
0.31% |
3.9
|
Asaia
|
RISB0014 |
Aedes aegypti
Order: Diptera
|
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
|
0.03% |
3.4
|
Asaia
|
RISB1315 |
Sogatella furcifera
Order: Hemiptera
|
infected WBPH were of shorter nymphal duration and heavier adult weight. Asaia sp. plays a role in improving WBPH fitness through involvement in host’s nutrient supply
|
0.03% |
3.4
|
Acetobacter
|
RISB0184 |
Drosophila melanogaster
Order: Diptera
|
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
|
0.31% |
2.6
|
Gluconobacter
|
RISB0016 |
Aedes aegypti
Order: Diptera
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
|
0.22% |
1.9
|
Gluconobacter
|
RISB1882 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.22% |
1.4
|
Gluconobacter
|
RISB0876 |
Drosophila suzukii
Order: Diptera
|
None
|
0.22% |
0.2
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.