SRR5940793 - Chrysomya megacephala

Basic Information

Run: SRR5940793

Assay Type: WGS

Bioproject: PRJNA385554

Biosample: SAMN07135678

Bytes: 2636517722

Center Name: NANYANG TECHNOLOGICAL UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Campinas

Latitude/Longitude: 22.8272 S 47.0636 W

Sample Information

Host: Chrysomya megacephala

Isolation: hospital

Biosample Model: Metagenome or environmental

Collection Date: 2012-05-19

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Myroides
RISB0626
Musca altica
Order: Diptera
None
15.55%
25.6
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
2.52%
21.4
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.32%
20.3
Klebsiella michiganensis
RISB1131
Bactrocera dorsalis
Order: Diptera
promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis
2.52%
20.3
Enterobacter sp. T2
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.05%
20.1
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.03%
20.0
Enterobacter sp. SGAir0187
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.01%
20.0
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.01%
20.0
Enterobacter sp. T2
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.05%
19.3
Psychrobacter sp. WY6
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
1.44%
18.9
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.03%
18.7
Psychrobacter sp. P11F6
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
1.14%
18.6
Citrobacter amalonaticus
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
0.00%
18.4
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.02%
18.3
Psychrobacter sp. WB2
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.74%
18.2
Lactococcus lactis
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.01%
18.0
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.02%
18.0
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.32%
17.9
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.07%
17.8
Pseudomonas protegens
RISB1224
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.06%
17.8
Serratia plymuthica
RISB1225
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.03%
17.7
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.03%
17.7
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.01%
17.7
Sphingobacterium faecium
RISB1226
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.01%
17.7
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.01%
17.6
Wolbachia pipientis
RISB1354
Drosophila melanogaster
Order: Diptera
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
0.32%
17.4
Proteus sp. ZN5
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.00%
17.1
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.01%
16.8
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.02%
16.7
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.00%
16.5
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.07%
16.4
Pseudomonas protegens
RISB1398
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.06%
16.4
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.01%
16.4
Sphingobacterium faecium
RISB1400
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.01%
16.4
Aeromonas sp. 19NY04SH05-1
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.56%
16.1
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.01%
16.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.05%
15.9
Aeromonas sp. ASNIH5
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.22%
15.8
Aeromonas sp. FDAARGOS 1418
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.16%
15.7
Providencia sp. R33
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
15.7
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.02%
15.7
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.05%
15.6
Acinetobacter sp. Colony158
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.04%
15.6
Chryseobacterium sp. POL2
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.04%
15.6
Chryseobacterium sp. StRB126
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.03%
15.6
Lactococcus lactis
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.01%
15.6
Acinetobacter sp. PK01
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
15.6
Chryseobacterium sp. SNU WT5
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
15.6
Acinetobacter sp. Z1
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.00%
15.6
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.43%
15.4
Pseudomonas protegens
RISB1878
Aedes aegypti
Order: Diptera
gut microbiome
0.06%
15.3
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
15.3
Staphylococcus hominis
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
15.3
Pantoea sp. SOD02
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.26%
15.3
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.03%
15.0
Pantoea sp. BRR-3P
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.01%
15.0
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
0.01%
15.0
Listeria
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.00%
15.0
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.00%
15.0
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.01%
13.3
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.04%
12.6
Lactobacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.00%
12.3
Lactobacillus
RISB1714
Drosophila melanogaster
Order: Diptera
It has the potential to reduce IMI-induced susceptibility to infection.
0.00%
11.4
Raoultella
RISB1575
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.56%
11.3
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.00%
10.7
Rickettsia
RISB1273
Culicoides impunctatus
Order: Diptera
possible symbiont-virus interactions
0.00%
10.7
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
10.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
10.3
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.00%
10.3
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.14%
10.1
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.03%
10.0
Pectobacterium
RISB1772
Muscidae
Order: Diptera
None
0.02%
10.0
Apibacter
RISB1138
Musca domestica
Order: Diptera
None
0.02%
10.0
Microbacterium arborescens
RISB2191
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
10.0
Rickettsia
RISB0588
Culicoides impunctatus
Order: Diptera
None
0.00%
10.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.03%
9.8
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.43%
9.8
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.01%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.00%
9.0
Streptomyces sp. NBC_01324
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.02%
9.0
Streptomyces sp. P3
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Streptomyces sp. SJL17-4
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.00%
9.0
Sphingobacterium sp. ML3W
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.04%
8.4
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.43%
8.2
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.03%
8.0
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.01%
7.7
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.01%
7.6
Spiroplasma ixodetis
RISB0842
Dactylopius coccus
Order: Hemiptera
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
0.01%
7.5
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.00%
7.5
Paludibacter propionicigenes
RISB2055
Odontotaenius disjunctus
Order: Coleoptera
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
0.00%
6.8
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.01%
6.8
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.01%
6.8
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.00%
6.7
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.00%
6.6
Frischella perrara
RISB2028
Diceroprocta semicincta
Order: Hemiptera
causes the formation of a scab-like structure on the gut epithelium of its host
0.00%
6.6
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.01%
6.2
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.01%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.01%
6.0
Paludibacter propionicigenes
RISB2056
Odontotaenius disjunctus
Order: Coleoptera
plays an important role in nitrogen fixation
0.00%
5.9
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.00%
5.8
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.03%
5.7
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.03%
5.5
Arsenophonus nasoniae
RISB0428
Nasonia vitripennis
Order: Hymenoptera
male killing
0.00%
5.2
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.15%
5.2
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.04%
5.0
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
5.0
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.01%
5.0
Rickettsia
RISB0940
Bemisia tabaci
Order: Hemiptera
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host
0.00%
5.0
Arsenophonus nasoniae
RISB0366
Pachycrepoideus vindemmiae
Order: Hymenoptera
None
0.00%
5.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.00%
5.0
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.00%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.00%
4.9
Rahnella
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.00%
4.8
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.02%
4.5
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.07%
4.3
Raoultella
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.56%
3.9
Pectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.02%
3.4
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.00%
3.1
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.00%
3.1
Halomonas
RISB1808
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
1.70%
3.0
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.00%
2.7
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.02%
2.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.02%
2.3
Rahnella
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.00%
2.2
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.02%
2.1
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.00%
2.1
Rahnella
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.00%
2.1
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.02%
2.1
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.03%
2.1
Raoultella
RISB1672
Spodoptera frugiperda
Order: Lepidoptera
downregulated POX but upregulated trypsin PI in this plant species
0.56%
1.9
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.00%
1.9
Halomonas
RISB1374
Bemisia tabaci
Order: Hemiptera
None
1.70%
1.7
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.03%
1.7
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.01%
1.6
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.16%
1.5
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.00%
1.5
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.01%
1.4
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.03%
1.2
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.07%
1.1
Pectobacterium
RISB0798
Pseudoregma bambucicola
Order: Hemiptera
may help P. bambucicola feed on the stalks of bamboo
0.02%
1.1
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.00%
1.1
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.01%
1.0
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.00%
1.0
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.01%
0.8
Turicibacter
RISB0451
Odontotaenius disjunctus
Order: Coleoptera
degrading  ellulose and xylan
0.00%
0.6
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.01%
0.4
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.01%
0.4
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
0.2
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.00%
0.2
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.13%
0.1
Sediminibacterium
RISB0244
Spodoptera frugiperda
Order: Lepidoptera
None
0.13%
0.1
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
0.07%
0.1
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.02%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.02%
0.0
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
0.01%
0.0
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.01%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.01%
0.0
Neisseria
RISB0512
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.00%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.00%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.00%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5940793
2.5 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table