SRR5940792 - Chrysomya megacephala
Basic Information
Run: SRR5940792
Assay Type: WGS
Bioproject: PRJNA385554
Biosample: SAMN07135679
Bytes: 2179455101
Center Name: NANYANG TECHNOLOGICAL UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2500
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Brazil
Continent: South America
Location Name: Brazil: Campinas
Latitude/Longitude: 22.8272 S 47.0636 W
Sample Information
Host: Chrysomya megacephala
Isolation: hospital
Biosample Model: Metagenome or environmental
Collection Date: 2012-05-19
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Myroides
Host Order Match
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
47.80% |
57.8
|
Ignatzschineria
Host Order Match
Host Species Match
|
RISB0562 |
Chrysomya megacephala
Order: Diptera
|
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
|
0.06% |
33.0
|
Klebsiella michiganensis
Species-level Match
Host Order Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
3.16% |
22.0
|
Klebsiella michiganensis
Species-level Match
Host Order Match
|
RISB1131 |
Bactrocera dorsalis
Order: Diptera
|
promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis
|
3.16% |
20.9
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
0.21% |
20.2
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.05% |
20.1
|
Klebsiella oxytoca
Species-level Match
Host Order Match
|
RISB0130 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.04% |
20.0
|
Enterobacter sp. SGAir0187
Species-level Match
Host Order Match
|
RISB0893 |
Bactrocera dorsalis
Order: Diptera
|
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
|
0.02% |
20.0
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.01% |
20.0
|
Enterobacter sp. T2
Species-level Match
Host Order Match
|
RISB1338 |
Ceratitis capitata
Order: Diptera
|
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
|
0.05% |
19.3
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
2.86% |
18.7
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1291 |
Aedes aegypti
Order: Diptera
|
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
|
0.03% |
18.7
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1169 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
2.86% |
18.4
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.04% |
18.3
|
Paenibacillus sp. BIHB 4019
Species-level Match
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.00% |
18.3
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.01% |
18.0
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.04% |
18.0
|
Psychrobacter sp. WY6
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.49% |
17.9
|
Psychrobacter sp. van23A
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.44% |
17.9
|
Psychrobacter sp. WB2
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
0.39% |
17.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.08% |
17.8
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB1515 |
Drosophila melanogaster
Order: Diptera
|
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
|
0.21% |
17.8
|
Serratia plymuthica
Species-level Match
Host Order Match
|
RISB1225 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.01% |
17.7
|
Pseudomonas protegens
Species-level Match
Host Order Match
|
RISB1224 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.01% |
17.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.01% |
17.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.01% |
17.6
|
Wolbachia pipientis
Species-level Match
Host Order Match
|
RISB1354 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
|
0.21% |
17.3
|
Proteus sp. ZN5
Species-level Match
Host Order Match
|
RISB2315 |
Aedes aegypti
Order: Diptera
|
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
|
0.01% |
17.1
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.01% |
16.8
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
0.04% |
16.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1396 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.08% |
16.4
|
Serratia plymuthica
Species-level Match
Host Order Match
|
RISB1399 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.01% |
16.4
|
Pseudomonas protegens
Species-level Match
Host Order Match
|
RISB1398 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.01% |
16.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.01% |
16.4
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.01% |
16.0
|
Providencia sp. PROV040
Species-level Match
Host Order Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.14% |
15.9
|
Aeromonas sp. 19NY04SH05-1
Species-level Match
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.18% |
15.7
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0820 |
Simulium tani
Order: Diptera
|
show resistance to some antibiotics
|
0.01% |
15.7
|
Aeromonas sp. ASNIH5
Species-level Match
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.12% |
15.7
|
Aeromonas sp. FDAARGOS 1418
Species-level Match
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.09% |
15.7
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1162 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.08% |
15.6
|
Acinetobacter sp. Colony158
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.03% |
15.6
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1167 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.01% |
15.6
|
Acinetobacter sp. PK01
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
15.6
|
Chryseobacterium sp. POL2
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.01% |
15.6
|
Paenibacillus sp. BIHB 4019
Species-level Match
Host Order Match
|
RISB2098 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
15.6
|
Acinetobacter sp. 10FS3-1
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
15.6
|
Chryseobacterium sp. G0201
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.00% |
15.6
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
0.48% |
15.5
|
Pseudomonas protegens
Species-level Match
Host Order Match
|
RISB1878 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
15.3
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
15.3
|
Staphylococcus hominis
Species-level Match
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
15.3
|
Pantoea sp. SOD02
Species-level Match
Host Order Match
|
RISB1708 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.10% |
15.1
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.04% |
15.0
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1701 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.01% |
15.0
|
Spiroplasma
Host Order Match
|
RISB1796 |
Drosophila neotestacea
Order: Diptera
|
when parasitized by the nematode Howardula aoronymphium, Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea
|
0.01% |
15.0
|
Pantoea sp. BRR-3P
Species-level Match
Host Order Match
|
RISB1708 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.00% |
15.0
|
Spiroplasma
Host Order Match
|
RISB1926 |
Anopheles gambiae
Order: Diptera
|
may have reproductive interactions with their mosquito hosts,either providing an indirect fitness advantage to females by inducing male killing or by directly protecting the host against natural pathogens
|
0.01% |
14.1
|
Spiroplasma
Host Order Match
|
RISB2026 |
Drosophila hydei
Order: Diptera
|
Spiroplasma protect their host against parasitoid attack. The Spiroplasma-conferred protection is partial and flies surviving a wasp attack have reduced adult longevity and fecundity
|
0.01% |
13.7
|
Shewanella
Host Order Match
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.02% |
12.6
|
Arsenophonus
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.00% |
11.8
|
Raoultella
Host Order Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.57% |
11.3
|
Arsenophonus
Host Order Match
|
RISB1173 |
Melophagus ovinus
Order: Diptera
|
participation of symbionts on blood-digestion
|
0.00% |
10.9
|
Peribacillus
Host Order Match
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.01% |
10.3
|
Alcaligenes
Host Order Match
|
RISB1871 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.00% |
10.3
|
Vagococcus
Host Order Match
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.23% |
10.2
|
Pantoea sp. SOD02
Species-level Match
|
RISB0118 |
Nezara viridula
Order: Hemiptera
|
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
|
0.10% |
10.1
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.04% |
10.0
|
Microbacterium arborescens
Species-level Match
|
RISB2191 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.01% |
10.0
|
Pectobacterium
Host Order Match
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.01% |
10.0
|
Arsenophonus
Host Order Match
|
RISB1853 |
Lipoptena cervi
Order: Diptera
|
None
|
0.00% |
10.0
|
Apibacter
Host Order Match
|
RISB1138 |
Musca domestica
Order: Diptera
|
None
|
0.00% |
10.0
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
0.48% |
9.8
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.04% |
9.8
|
Clostridium sp. OS1-26
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.00% |
9.2
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.01% |
9.0
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.03% |
9.0
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.00% |
9.0
|
Streptomyces sp. P3
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.01% |
9.0
|
Streptomyces sp. SJL17-4
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.00% |
9.0
|
Sphingobacterium sp. ML3W
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.01% |
8.4
|
Sphingobacterium sp. UDSM-2020
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.00% |
8.3
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.48% |
8.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.02% |
8.0
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.02% |
7.7
|
Enterococcus faecalis
Species-level Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.01% |
7.6
|
Microbacterium arborescens
Species-level Match
|
RISB1759 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.01% |
6.8
|
Leclercia adecarboxylata
Species-level Match
|
RISB1757 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.01% |
6.8
|
Corynebacterium variabile
Species-level Match
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.00% |
6.8
|
Staphylococcus xylosus
Species-level Match
|
RISB2247 |
Anticarsia gemmatalis
Order: Lepidoptera
|
mitigation of the negative effects of proteinase inhibitors produced by the host plant
|
0.00% |
6.7
|
Paenibacillus sp. BIHB 4019
Species-level Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.00% |
6.4
|
Microbacterium arborescens
Species-level Match
|
RISB1761 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.01% |
6.2
|
Leclercia adecarboxylata
Species-level Match
|
RISB1758 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.01% |
6.2
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.02% |
6.0
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.02% |
5.7
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.02% |
5.4
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.13% |
5.1
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Sphingobacterium multivorum
Species-level Match
|
RISB0671 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.01% |
5.0
|
Candidatus Karelsulcia muelleri
Species-level Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.00% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.00% |
4.9
|
Apibacter
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.00% |
4.5
|
Raoultella
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.57% |
3.9
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.00% |
3.8
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
3.4
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.00% |
2.7
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.01% |
2.4
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.01% |
2.3
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.01% |
2.1
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.04% |
2.1
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.01% |
2.1
|
Raoultella
|
RISB1672 |
Spodoptera frugiperda
Order: Lepidoptera
|
downregulated POX but upregulated trypsin PI in this plant species
|
0.57% |
1.9
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.04% |
1.7
|
Bradyrhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
0.01% |
1.6
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.14% |
1.5
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.01% |
1.4
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.08% |
1.4
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.04% |
1.2
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.01% |
1.1
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.01% |
1.1
|
Lysinibacillus
|
RISB1416 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.01% |
1.0
|
Curtobacterium
|
RISB1910 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.01% |
0.8
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.01% |
0.4
|
Lysinibacillus
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.01% |
0.2
|
Kluyvera
|
RISB1064 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.00% |
0.2
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.14% |
0.1
|
Weeksella
|
RISB1265 |
Rheumatobates bergrothi
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Sediminibacterium
|
RISB0244 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.02% |
0.0
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.01% |
0.0
|
Curtobacterium
|
RISB0900 |
Myzus persicae
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Apibacter
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.00% |
0.0
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.00% |
0.0
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.00% |
0.0
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.00% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.