SRR5940768 - Chrysomya megacephala

Basic Information

Run: SRR5940768

Assay Type: WGS

Bioproject: PRJNA385554

Biosample: SAMN07135694

Bytes: 1919506970

Center Name: NANYANG TECHNOLOGICAL UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Campinas

Latitude/Longitude: 22.9158 S 47.1472 W

Sample Information

Host: Chrysomya megacephala

Isolation: Garbage

Biosample Model: Metagenome or environmental

Collection Date: 2012-04-18

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Ignatzschineria
RISB0562
Chrysomya megacephala
Order: Diptera
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
0.09%
33.1
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.28%
20.3
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.23%
20.2
Klebsiella oxytoca
RISB0130
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.03%
20.0
Enterobacter sp. CP102
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.03%
20.0
Enterobacter sp. JUb54
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
0.01%
20.0
Acinetobacter guillouiae
RISB0768
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
1.22%
19.5
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.50%
19.4
Enterobacter sp. CP102
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
0.03%
19.3
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
1.37%
19.1
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.32%
19.0
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.14%
18.4
Klebsiella oxytoca
RISB1139
Musca domestica
Order: Diptera
It is associated to newly laid housefly eggs, where it is deposited by the female, and has a role in oviposition as well as protection against potential pathogens
0.03%
18.3
Lactococcus lactis
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.23%
18.2
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
3.13%
18.1
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.14%
18.1
Enterococcus casseliflavus
RISB0112
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.07%
18.1
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.32%
18.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.19%
17.9
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.28%
17.8
Serratia plymuthica
RISB1225
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.07%
17.8
Pseudomonas protegens
RISB1224
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.02%
17.7
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
1.37%
17.7
Exiguobacterium sp. 9-2
RISB0007
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.01%
17.7
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.07%
17.6
Comamonas terrigena
RISB2021
Bactrocera dorsalis
Order: Diptera
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
0.04%
17.5
Psychrobacter sp. WY6
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.04%
17.5
Psychrobacter sp. WB2
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.02%
17.5
Wolbachia pipientis
RISB1354
Drosophila melanogaster
Order: Diptera
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
0.28%
17.3
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.19%
17.0
Citrobacter freundii
RISB1162
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
1.37%
16.9
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.44%
16.9
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.14%
16.9
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.19%
16.5
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.48%
16.5
Pseudomonas protegens
RISB1398
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.02%
16.4
Acinetobacter sp. MYb10
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.73%
16.3
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.33%
16.2
Acinetobacter sp. NyZ410
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.56%
16.1
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.07%
16.1
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.91%
15.9
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.33%
15.9
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.14%
15.8
Lactococcus lactis
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.23%
15.8
Providencia sp. R33
RISB1574
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.02%
15.7
Chryseobacterium sp. G0186
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
15.6
Chryseobacterium sp. POL2
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
15.6
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.48%
15.5
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.14%
15.4
Comamonas testosteroni
RISB1875
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
15.3
Pseudomonas protegens
RISB1878
Aedes aegypti
Order: Diptera
gut microbiome
0.02%
15.3
Staphylococcus hominis
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
15.3
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.27%
15.3
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.17%
15.2
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
0.14%
15.1
Pantoea sp. MT58
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.11%
15.1
Erwinia aphidicola
RISB1705
Phlebotomus papatasi
Order: Diptera
None
0.10%
15.1
Pectobacterium carotovorum
RISB1772
Muscidae
Order: Diptera
None
0.09%
15.1
Pantoea sp. BRR-3P
RISB1708
Phlebotomus papatasi
Order: Diptera
None
0.05%
15.1
Spiroplasma
RISB1796
Drosophila neotestacea
Order: Diptera
when parasitized by the nematode Howardula aoronymphium, Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea
0.02%
15.0
Spiroplasma
RISB1926
Anopheles gambiae
Order: Diptera
may have reproductive interactions with their mosquito hosts,either providing an indirect fitness advantage to females by inducing male killing or by directly protecting the host against natural pathogens
0.02%
14.1
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.27%
13.9
Spiroplasma
RISB2026
Drosophila hydei
Order: Diptera
Spiroplasma protect their host against parasitoid attack. The Spiroplasma-conferred protection is partial and flies surviving a wasp attack have reduced adult longevity and fecundity
0.02%
13.7
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.05%
13.3
Lactobacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.91%
13.2
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.27%
12.6
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
3.13%
12.5
Lactobacillus
RISB1714
Drosophila melanogaster
Order: Diptera
It has the potential to reduce IMI-induced susceptibility to infection.
0.91%
12.3
Gluconobacter
RISB0016
Aedes aegypti
Order: Diptera
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
0.07%
11.7
Dysgonomonas
RISB1235
Hermetia illucens
Order: Diptera
provides the tools for degrading of a broad range of substrates
0.22%
11.5
Gluconobacter
RISB1882
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.07%
11.2
Komagataeibacter
RISB1883
Drosophila suzukii
Order: Diptera
produce volatile substances that attract female D. suzukii
0.03%
11.2
Raoultella
RISB1575
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.21%
10.9
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.37%
10.9
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
3.13%
10.9
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.03%
10.8
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
10.6
Achromobacter
RISB1869
Aedes aegypti
Order: Diptera
gut microbiome
0.04%
10.3
Alcaligenes
RISB1871
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
10.3
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.22%
10.2
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.20%
10.2
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.17%
10.2
Gluconobacter
RISB0876
Drosophila suzukii
Order: Diptera
None
0.07%
10.1
Microbacterium arborescens
RISB2191
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.05%
10.1
Apibacter
RISB1138
Musca domestica
Order: Diptera
None
0.01%
10.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.17%
9.9
Rahnella aquatilis
RISB1623
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.02%
9.8
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
9.2
Clostridium sp. OS1-26
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
9.2
Streptomyces sp. NBC_01324
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.11%
9.1
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.04%
9.0
Streptomyces sp. P3
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.05%
9.0
Weissella cibaria
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.17%
9.0
Streptomyces sp. SJL17-4
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Sphingobacterium sp. R2
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.03%
8.4
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.06%
8.0
Weissella cibaria
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.17%
7.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.10%
7.8
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.15%
7.7
Rahnella aquatilis
RISB1800
Dendroctonus valens
Order: Coleoptera
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
0.02%
7.2
Rahnella aquatilis
RISB0741
Dendroctonus ponderosae
Order: Coleoptera
R. aquatilis decreased (−)-α-pinene (38%) and (+)-α-pinene (46%) by 40% and 45% (by GC-MS), respectively
0.02%
7.1
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.20%
7.0
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.05%
6.9
Corynebacterium variabile
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.03%
6.8
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.15%
6.8
Kosakonia sp. CCTCC M2018092
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.10%
6.5
Erwinia sp. E602
RISB0808
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-12 oxidation pathway
0.02%
6.4
Kosakonia sp. SMBL-WEM22
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.02%
6.4
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.20%
6.3
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.05%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.10%
6.1
Lysinibacillus fusiformis
RISB1417
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.03%
6.0
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.15%
5.9
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.06%
5.8
Erwinia sp. E602
RISB1986
Bombyx mori
Order: Lepidoptera
producing cellulase and amylase
0.02%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.06%
5.5
Exiguobacterium sp. 9-2
RISB1152
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.01%
5.4
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.35%
5.4
Lysinibacillus fusiformis
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.03%
5.3
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.02%
5.2
Staphylococcus hominis
RISB1071
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.01%
5.2
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.05%
5.1
Sphingobacterium multivorum
RISB0671
Melanaphis bambusae
Order: Hemiptera
None
0.04%
5.0
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.03%
5.0
Pseudocitrobacter corydidari
RISB0696
Corydidarum magnifica
Order: Blattodea
None
0.01%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.02%
4.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.01%
4.5
Raoultella
RISB2226
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.21%
3.6
Symbiopectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.02%
3.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.77%
3.1
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.77%
2.9
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.77%
2.8
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.08%
2.5
Delftia
RISB0083
Osmia cornifrons
Order: Hymenoptera
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
0.38%
2.4
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.24%
2.4
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.31%
2.3
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.31%
2.0
Delftia
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.38%
1.8
Leuconostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.38%
1.8
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.05%
1.6
Raoultella
RISB1672
Spodoptera frugiperda
Order: Lepidoptera
downregulated POX but upregulated trypsin PI in this plant species
0.21%
1.5
Delftia
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.38%
1.5
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.31%
1.5
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.02%
1.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.04%
1.4
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.37%
1.2
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.04%
1.1
Cronobacter
RISB0247
Tenebrio molitor
Order: Coleoptera
may be indirectly involved in the digestion of PE
0.07%
1.1
Dickeya
RISB1086
Rhodnius prolixus
Order: Hemiptera
supply enzymatic biosynthesis of B-complex vitamins
0.03%
1.1
Turicibacter
RISB0451
Odontotaenius disjunctus
Order: Coleoptera
degrading  ellulose and xylan
0.26%
0.8
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.07%
0.8
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.37%
0.7
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.39%
0.6
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.07%
0.4
Dysgonomonas
RISB1481
Brachinus elongatulus
Order: Coleoptera
None
0.22%
0.2
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.08%
0.1
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.07%
0.1
Achromobacter
RISB0383
Aphis gossypii
Order: Hemiptera
None
0.04%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.03%
0.0
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.03%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.02%
0.0
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.02%
0.0
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.01%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.01%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5940768
1.8 GB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table