SRR5940737 - Chrysomya megacephala

Basic Information

Run: SRR5940737

Assay Type: WGS

Bioproject: PRJNA385554

Biosample: SAMN07135650

Bytes: 643485805

Center Name: NANYANG TECHNOLOGICAL UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Singapore

Continent: Asia

Location Name: Singapore

Latitude/Longitude: 1.344170 N 103.679283 E

Sample Information

Host: Chrysomya megacephala

Isolation: NTU campus

Biosample Model: Metagenome or environmental

Collection Date: 2014-10-09

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Enterobacter cloacae
RISB1414
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
24.86%
41.3
Enterobacter cloacae
RISB1164
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
24.86%
40.4
Enterobacter cloacae
RISB1768
Muscidae
Order: Diptera
None
24.86%
39.9
Wolbachia
RISB0563
Chrysomya megacephala
Order: Diptera
Wolbachia increases the resistance to arbovirus infection, resulting in decreased virus transmission.
0.48%
32.5
Acinetobacter guillouiae
RISB0768
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
6.83%
25.1
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
4.51%
22.2
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
4.51%
20.9
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.09%
20.1
Citrobacter freundii
RISB1162
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
4.51%
20.1
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.02%
20.0
Klebsiella michiganensis
RISB1052
Bactrocera dorsalis
Order: Diptera
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
0.02%
18.9
Serratia marcescens
RISB1291
Aedes aegypti
Order: Diptera
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
0.26%
18.9
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.50%
18.8
Acinetobacter sp. MYb10
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
3.19%
18.8
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.50%
18.5
Lactococcus lactis
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.09%
18.1
Acinetobacter sp. TAC-1
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
2.43%
18.0
Serratia marcescens
RISB0009
Phormia regina
Order: Diptera
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.26%
17.9
Klebsiella michiganensis
RISB1131
Bactrocera dorsalis
Order: Diptera
promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis
0.02%
17.8
Serratia plymuthica
RISB1225
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.07%
17.8
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.01%
17.7
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.06%
17.6
Psychrobacter sp. YP14
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.04%
17.5
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
0.50%
17.2
Proteus sp. ZN5
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.06%
17.2
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
2.14%
17.1
Stenotrophomonas maltophilia
RISB1141
Hermetia illucens
Order: Diptera
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
0.01%
16.8
Stenotrophomonas maltophilia
RISB1401
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.01%
16.4
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.06%
16.1
Lactiplantibacillus plantarum
RISB0674
Drosophila melanogaster
Order: Diptera
could effectively inhibit fungal spore germinations
0.01%
16.0
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.04%
15.9
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.13%
15.8
Lactococcus lactis
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.09%
15.7
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.04%
15.6
Chryseobacterium sp. G0201
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.02%
15.6
Chryseobacterium sp. POL2
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.01%
15.6
Wolbachia
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.48%
15.5
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.09%
15.4
Staphylococcus hominis
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.01%
15.3
Wolbachia
RISB0779
Drosophila melanogaster
Order: Diptera
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
0.48%
15.3
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.22%
15.2
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
0.16%
15.2
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
0.09%
15.1
Asaia
RISB0854
Anopheles stephensi
Order: Diptera
Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
0.09%
15.1
Spiroplasma
RISB1796
Drosophila neotestacea
Order: Diptera
when parasitized by the nematode Howardula aoronymphium, Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea
0.05%
15.1
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.02%
15.0
Lactiplantibacillus plantarum
RISB0608
Drosophila melanogaster
Order: Diptera
None
0.01%
15.0
Spiroplasma
RISB1926
Anopheles gambiae
Order: Diptera
may have reproductive interactions with their mosquito hosts,either providing an indirect fitness advantage to females by inducing male killing or by directly protecting the host against natural pathogens
0.05%
14.1
Spiroplasma
RISB2026
Drosophila hydei
Order: Diptera
Spiroplasma protect their host against parasitoid attack. The Spiroplasma-conferred protection is partial and flies surviving a wasp attack have reduced adult longevity and fecundity
0.05%
13.7
Asaia
RISB0014
Aedes aegypti
Order: Diptera
The bacterium Asaia is considered a highly promising candidate for arboviral control in Aedes mosquitoes.Asaia could play a role in inhibiting CHIKV within Ae. aegypti.
0.09%
13.5
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.05%
13.3
Asaia
RISB2533
Anopheles stephensi
Order: Diptera
Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission
0.09%
13.0
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.02%
12.6
Lactobacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.02%
12.3
Myroides
RISB0626
Musca altica
Order: Diptera
None
2.08%
12.1
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
2.14%
11.5
Lactobacillus
RISB1714
Drosophila melanogaster
Order: Diptera
It has the potential to reduce IMI-induced susceptibility to infection.
0.02%
11.4
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
1.28%
11.3
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.01%
10.7
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.05%
10.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.03%
10.3
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.22%
10.2
Pseudomonas sp. A2
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.25%
10.1
Gilliamella apicola
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.01%
10.0
Microbacterium arborescens
RISB2191
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.01%
10.0
Apibacter
RISB1138
Musca domestica
Order: Diptera
None
0.01%
10.0
Pseudomonas sp. NIBR-H-19
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.18%
10.0
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.22%
10.0
Pseudomonas sp. J380
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.16%
10.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
2.14%
9.9
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
9.2
Clostridium sp. MB40-C1
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.01%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.05%
9.1
Streptomyces sp. NBC_01324
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.04%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.01%
9.0
Streptomyces sp. P3
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.02%
9.0
Streptomyces sp. SJL17-4
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.01%
9.0
Sphingobacterium sp. UDSM-2020
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.01%
8.4
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.11%
8.1
Carnobacterium maltaromaticum
RISB1693
Plutella xylostella
Order: Lepidoptera
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
0.44%
7.9
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.07%
7.8
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.06%
7.6
Carnobacterium maltaromaticum
RISB1692
Plutella xylostella
Order: Lepidoptera
participate in the synthesis of host lacking amino acids histidine and threonine
0.44%
7.0
Leclercia adecarboxylata
RISB1757
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.02%
6.8
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.01%
6.8
Staphylococcus xylosus
RISB2247
Anticarsia gemmatalis
Order: Lepidoptera
mitigation of the negative effects of proteinase inhibitors produced by the host plant
0.01%
6.7
Carnobacterium maltaromaticum
RISB1691
Plutella xylostella
Order: Lepidoptera
activity of cellulose and hemicellulose
0.44%
6.2
Leclercia adecarboxylata
RISB1758
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.02%
6.2
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.01%
6.2
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.07%
6.1
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.11%
5.8
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.59%
5.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.11%
5.5
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.06%
5.1
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.05%
5.1
Providencia rettgeri
RISB1352
Nasonia vitripennis
Order: Hymenoptera
None
0.04%
5.0
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.03%
5.0
Gilliamella apicola
RISB1945
Apis cerana
Order: Hymenoptera
None
0.01%
5.0
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.01%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.03%
4.9
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.01%
4.5
Weissella
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.09%
3.9
Weissella
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.09%
2.8
Yersinia
RISB0492
Cimex hemipterus
Order: Hemiptera
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
0.01%
2.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.06%
2.4
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.13%
2.3
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.20%
2.2
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.06%
2.2
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.06%
2.1
Delftia
RISB0083
Osmia cornifrons
Order: Hymenoptera
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
0.02%
2.0
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.20%
1.8
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.02%
1.6
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.04%
1.5
Delftia
RISB0806
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-19 oxidation pathway
0.02%
1.4
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.20%
1.4
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.05%
1.4
Delftia
RISB1754
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.02%
1.2
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.05%
1.1
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.03%
1.0
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.04%
0.8
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.06%
0.4
Kluyvera
RISB1064
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.10%
0.3
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.03%
0.3
Weissella
RISB1566
Liometopum apiculatum
Order: Hymenoptera
None
0.09%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.05%
0.1
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.04%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.03%
0.0
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.02%
0.0
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.01%
0.0
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.01%
0.0
Yersinia
RISB0407
Anaphes nitens
Order: Hymenoptera
None
0.01%
0.0
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.01%
0.0
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.01%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5940737
613.7 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table