SRR5940736 - Chrysomya megacephala

Basic Information

Run: SRR5940736

Assay Type: WGS

Bioproject: PRJNA385554

Biosample: SAMN07135651

Bytes: 841453701

Center Name: NANYANG TECHNOLOGICAL UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Singapore

Continent: Asia

Location Name: Singapore

Latitude/Longitude: 1.344170 N 103.679283 E

Sample Information

Host: Chrysomya megacephala

Isolation: NTU campus

Biosample Model: Metagenome or environmental

Collection Date: 2014-12-01

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
4.21%
22.5
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
4.21%
22.2
Morganella morganii
RISB0611
Bactrocera dorsalis
Order: Diptera
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
4.21%
20.9
Wolbachia pipientis
RISB0766
Aedes fluviatilis
Order: Diptera
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
0.86%
20.9
Lactococcus lactis
RISB0131
Ceratitis capitata
Order: Diptera
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The  colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
0.15%
20.2
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.05%
20.1
Acinetobacter sp. ESL0695
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
3.15%
18.7
Wolbachia pipientis
RISB1515
Drosophila melanogaster
Order: Diptera
increases the recombination rate observed across two genomic intervals and increases the efficacy of natural selection in hosts
0.86%
18.4
Acinetobacter guillouiae
RISB0768
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.05%
18.3
Citrobacter freundii
RISB1221
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.53%
18.2
Lactococcus lactis
RISB0113
Bactrocera dorsalis
Order: Diptera
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
0.15%
18.2
Wolbachia pipientis
RISB1354
Drosophila melanogaster
Order: Diptera
Wolbachia influence octopamine metabolism in the Drosophila females, which is by the symbiont genotype
0.86%
17.9
Proteus sp. ZN5
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.70%
17.8
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.11%
17.7
Citrobacter freundii
RISB1396
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.53%
16.9
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.34%
16.2
Enterococcus faecalis
RISB0095
Bactrocera minax
Order: Diptera
egrade phenols in unripe citrus in B. minax larvae
0.11%
16.1
Citrobacter freundii
RISB1162
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.53%
16.1
Bacillus thuringiensis
RISB0820
Simulium tani
Order: Diptera
show resistance to some antibiotics
0.25%
16.0
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.34%
15.9
Lactococcus lactis
RISB1167
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.15%
15.7
Acinetobacter sp. TR3
RISB2083
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.06%
15.6
Chryseobacterium sp. POL2
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.06%
15.6
Bacillus cereus
RISB1872
Aedes aegypti
Order: Diptera
gut microbiome
0.31%
15.6
Providencia alcalifaciens
RISB1168
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.02%
15.6
Buchnera aphidicola
RISB0051
Episyrphus balteatus
Order: Diptera
None
0.46%
15.5
Escherichia coli
RISB1769
Calliphoridae
Order: Diptera
None
0.43%
15.4
Staphylococcus hominis
RISB1881
Aedes aegypti
Order: Diptera
gut microbiome
0.04%
15.3
Bacillus cereus
RISB1701
Phlebotomus papatasi
Order: Diptera
None
0.31%
15.3
Klebsiella pneumoniae
RISB1771
Muscidae
Order: Diptera
None
0.19%
15.2
Enterobacter hormaechei
RISB1331
Zeugodacus cucurbitae
Order: Diptera
None
0.13%
15.1
Spiroplasma
RISB1796
Drosophila neotestacea
Order: Diptera
when parasitized by the nematode Howardula aoronymphium, Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea
0.07%
15.1
Pseudomonas
RISB0425
Anopheles sinensis
Order: Diptera
Pseudomonas is the most prevalent microbiota in the Plasmodium-negative groups and protects mosquitoes from the invasion of malaria parasites.A low proportion of the Psuedomonas population of microbiome profiles in the hyperendemic areas, indicating that there might be some factors such as malaria parasites to disturb the balance of microbiota
0.05%
15.1
Lactobacillus
RISB1866
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.04%
15.0
Spiroplasma
RISB1926
Anopheles gambiae
Order: Diptera
may have reproductive interactions with their mosquito hosts,either providing an indirect fitness advantage to females by inducing male killing or by directly protecting the host against natural pathogens
0.07%
14.2
Spiroplasma
RISB2026
Drosophila hydei
Order: Diptera
Spiroplasma protect their host against parasitoid attack. The Spiroplasma-conferred protection is partial and flies surviving a wasp attack have reduced adult longevity and fecundity
0.07%
13.7
Pseudomonas
RISB2061
Scaptomyza nigrita
Order: Diptera
increased S. nigrita herbivory in bittercress,adult S. nigrita feeding was promoted by a P. fluorescens group strain, while larval feeding was promoted by a P. syringae group strain
0.05%
13.7
Paenibacillus
RISB0774
Delia antiqua
Order: Diptera
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.12%
13.4
Pseudomonas
RISB1512
Delia lupini
Order: Diptera
Antibiotic-treated larvae suffered growth retardation on a diet containing plant extract or swainsonine. Gut bacteria showed toxin-degradation activities in vitro
0.05%
13.3
Sphingobacterium
RISB1226
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
0.11%
12.8
Lactobacillus
RISB0185
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.04%
12.3
Lactobacillus
RISB1714
Drosophila melanogaster
Order: Diptera
It has the potential to reduce IMI-induced susceptibility to infection.
0.04%
11.5
Sphingobacterium
RISB1400
Delia antiqua
Order: Diptera
suppressed Beauveria bassiana conidia germination and hyphal growth
0.11%
11.5
Vagococcus
RISB0042
Aldrichina grahami
Order: Diptera
None
0.80%
10.8
Paenibacillus
RISB2098
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.12%
10.7
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.46%
10.5
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.05%
10.3
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.46%
10.2
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.19%
10.2
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.13%
10.1
Microbacterium arborescens
RISB2191
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.05%
10.1
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
0.43%
9.8
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.03%
9.3
Clostridium sp. OS1-26
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.02%
9.2
Streptomyces sp. NBC_01324
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.21%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.09%
9.1
Streptomyces sp. P3
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.06%
9.0
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.03%
9.0
Streptomyces sp. SJL17-4
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.04%
9.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
0.43%
8.2
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.20%
8.1
Proteus vulgaris
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.33%
8.0
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.11%
7.7
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
1.96%
7.2
Microbacterium arborescens
RISB1759
Spodoptera frugiperda
Order: Lepidoptera
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
0.05%
6.9
Proteus vulgaris
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.33%
6.3
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.19%
6.2
Microbacterium arborescens
RISB1761
Spodoptera frugiperda
Order: Lepidoptera
may influence the metabolization of pesticides in insects
0.05%
6.2
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.20%
5.9
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.20%
5.6
Paenibacillus
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.12%
5.1
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
0.12%
5.1
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.12%
5.1
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.06%
5.1
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.02%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.03%
4.9
Sphingobacterium
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.11%
3.5
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
0.03%
3.2
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
0.03%
3.1
Tsukamurella
RISB1531
Hoplothrips carpathicus
Order: Thysanoptera
This genus was identified as dominant in intensively feeding second-stage larvae and suggests a mechanism by which L2 larvae might process cellulose.
0.05%
3.0
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
0.03%
2.8
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.41%
2.4
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.08%
2.4
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.08%
2.2
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.08%
2.1
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.41%
2.1
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.06%
1.6
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.41%
1.6
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.12%
1.4
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.09%
1.2
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.06%
1.0
Curtobacterium
RISB1910
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.10%
0.9
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.16%
0.5
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.06%
0.3
Curtobacterium
RISB0900
Myzus persicae
Order: Hemiptera
None
0.10%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.06%
0.1
Legionella
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.04%
0.0
Weeksella
RISB1265
Rheumatobates bergrothi
Order: Hemiptera
None
0.04%
0.0
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.03%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5940736
802.5 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table