SRR5940727 - Musca domestica
Basic Information
Run: SRR5940727
Assay Type: WGS
Bioproject: PRJNA385554
Biosample: SAMN07135749
Bytes: 2063315021
Center Name: NANYANG TECHNOLOGICAL UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2500
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Brazil
Continent: South America
Location Name: Brazil: Campinas
Latitude/Longitude: 22.9049 S 47.0193 W
Sample Information
Host: Musca domestica
Isolation: Park
Biosample Model: Metagenome or environmental
Collection Date: 2015-01-22
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
22.73% |
37.7
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
22.73% |
37.5
|
Wolbachia
Host Order Match
|
RISB1408 |
Anastrepha fraterculus
Order: Diptera
|
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
|
22.73% |
37.4
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0820 |
Simulium tani
Order: Diptera
|
show resistance to some antibiotics
|
4.70% |
20.4
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
1.98% |
19.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
1.44% |
19.1
|
Psychrobacter sp. YP14
Species-level Match
Host Order Match
|
RISB1773 |
Calliphoridae
Order: Diptera
|
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
|
1.63% |
19.1
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.22% |
18.5
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
2.52% |
18.4
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1396 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
1.98% |
18.3
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
1.44% |
18.2
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.22% |
18.2
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1169 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
2.52% |
18.1
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
1.44% |
17.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1162 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
1.98% |
17.5
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
0.22% |
16.9
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
1.72% |
16.7
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
1.13% |
16.4
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1771 |
Muscidae
Order: Diptera
|
None
|
1.37% |
16.4
|
Klebsiella sp. CTHL.F3a
Species-level Match
Host Order Match
|
RISB0917 |
Aedes aegypti
Order: Diptera
|
could impact larval development (e.g., spermidine)
|
0.20% |
16.2
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1701 |
Phlebotomus papatasi
Order: Diptera
|
None
|
1.13% |
16.1
|
Klebsiella sp. CTHL.F3a
Species-level Match
Host Order Match
|
RISB1573 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.20% |
15.9
|
Acinetobacter sp. GSS19
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.15% |
15.7
|
Enterobacter hormaechei
Species-level Match
Host Order Match
|
RISB1331 |
Zeugodacus cucurbitae
Order: Diptera
|
None
|
0.63% |
15.6
|
Providencia alcalifaciens
Species-level Match
Host Order Match
|
RISB1168 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.06% |
15.6
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.30% |
15.3
|
Myroides
Host Order Match
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
5.26% |
15.3
|
Staphylococcus
Host Order Match
|
RISB0427 |
Anopheles sinensis
Order: Diptera
|
be identified in each part of the hyperendemic area of this study has a potential role to interact with malaria parasites.
|
0.72% |
13.2
|
Shewanella
Host Order Match
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.19% |
12.7
|
Streptomyces sp. T12
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
3.62% |
12.6
|
Streptomyces sp. T12
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
3.62% |
12.3
|
Gluconobacter
Host Order Match
|
RISB0016 |
Aedes aegypti
Order: Diptera
|
Gluconobacter might increase the susceptibility of Ae. aegypti to CHIKV infection.
|
0.48% |
12.1
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
1.83% |
11.7
|
Gluconobacter
Host Order Match
|
RISB1882 |
Drosophila suzukii
Order: Diptera
|
produce volatile substances that attract female D. suzukii
|
0.48% |
11.6
|
Vagococcus
Host Order Match
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
1.56% |
11.6
|
Chryseobacterium
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.55% |
11.1
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.72% |
11.0
|
Staphylococcus
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.72% |
11.0
|
Streptomyces sp. T12
Species-level Match
|
RISB1134 |
mud dauber wasp
Order: Hymenoptera
|
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
|
3.62% |
11.0
|
Chryseobacterium
Host Order Match
|
RISB1874 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.55% |
10.8
|
Aeromonas
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.11% |
10.7
|
Chryseobacterium
Host Order Match
|
RISB0015 |
Aedes aegypti
Order: Diptera
|
None
|
0.55% |
10.6
|
Gluconobacter
Host Order Match
|
RISB0876 |
Drosophila suzukii
Order: Diptera
|
None
|
0.48% |
10.5
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.30% |
10.3
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
1.83% |
10.2
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.30% |
10.1
|
Serratia liquefaciens
Species-level Match
|
RISB1624 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.16% |
10.0
|
Acinetobacter sp. GSS19
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.15% |
9.8
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.72% |
9.4
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.05% |
9.1
|
Acinetobacter sp. GSS19
Species-level Match
|
RISB1978 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.15% |
9.0
|
Pseudomonas sp. CIP-10
Species-level Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
1.83% |
8.3
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.12% |
8.1
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.17% |
7.9
|
Serratia liquefaciens
Species-level Match
|
RISB1801 |
Dendroctonus valens
Order: Coleoptera
|
could alleviate or compromise the antagonistic effects of fungi O. minus and L. procerum on RTB larval growth
|
0.16% |
7.3
|
Rhizobium
|
RISB0135 |
Coccinella septempunctata
Order: Coleoptera
|
be commonly found in plant roots and they all have nitrogen fixation abilities
|
5.60% |
7.2
|
Serratia liquefaciens
Species-level Match
|
RISB2461 |
Bombyx mori
Order: Lepidoptera
|
able to utilize three polysaccharides including CMcellulose, xylan and pectin
|
0.16% |
6.7
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.17% |
6.2
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.12% |
5.8
|
Staphylococcus
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.72% |
5.7
|
Blattabacterium cuenoti
Species-level Match
|
RISB0093 |
Blattella germanica
Order: Blattodea
|
obligate endosymbiont
|
0.12% |
5.5
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.31% |
5.2
|
Candidatus Annandia adelgestsuga
Species-level Match
|
RISB2207 |
Adelges tsugae
Order: Hemiptera
|
None
|
0.04% |
5.0
|
Clostridium
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.69% |
4.9
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
3.02% |
4.3
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
1.30% |
3.3
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
1.30% |
2.9
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
1.25% |
2.6
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
1.30% |
2.5
|
Clostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.69% |
1.8
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
1.25% |
1.3
|
Lysinibacillus
|
RISB1416 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.25% |
1.2
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.05% |
1.1
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.11% |
0.9
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.16% |
0.8
|
Clostridium
|
RISB1959 |
Pyrrhocoridae
Order: Hemiptera
|
None
|
0.69% |
0.7
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.14% |
0.5
|
Aeromonas
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.11% |
0.5
|
Lysinibacillus
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.25% |
0.5
|
Flavobacterium
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.32% |
0.3
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.31% |
0.3
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.31% |
0.3
|
Legionella
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.07% |
0.1
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.04% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.