SRR5644282 - Dorymyrmex brunneus

Basic Information

Run: SRR5644282

Assay Type: WGS

Bioproject: PRJNA385522

Biosample: SAMN25003349

Bytes: 718112897

Center Name: EMBRAPA

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Brazil

Continent: South America

Location Name: Brazil: Mato Grosso

Latitude/Longitude: 11.8602 S 55.6222 W

Sample Information

Host: Dorymyrmex brunneus

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2015

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
2.85%
21.8
Streptomyces sp. T12
RISB2334
Sirex noctilio
Order: Hymenoptera
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
2.85%
21.6
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
5.90%
20.9
Streptomyces sp. T12
RISB1134
mud dauber wasp
Order: Hymenoptera
secondary metabolites derived from a Streptomyces sp. displayed significant inhibitory activity against hexokinase II
2.85%
20.2
Pseudomonas sp. CIP-10
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
4.09%
19.1
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
8.95%
19.0
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
2.72%
17.2
Stenotrophomonas maltophilia
RISB2004
Trichogramma chilonis
Order: Hymenoptera
could significantly increase both female count
1.06%
17.0
Enterobacter sp. JBIWA005
RISB0893
Bactrocera dorsalis
Order: Diptera
be beneficial, with some quality control indices, such as adult size, pupal weight, survival rate under stress and nutritionally rich conditions, and mating competitiveness, being significantly increased, while slight nonsignificant increases in emergence rate and flight ability were observed
6.53%
16.5
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
5.90%
15.9
Enterobacter sp. JBIWA005
RISB1338
Ceratitis capitata
Order: Diptera
Enterobacter sp. AA26 dry biomass can fully replace the brewer’s yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS
6.53%
15.8
Wolbachia
RISB0190
Encarsia formosa
Order: Hymenoptera
Wolbachia's parthenogenesis-induction feminization factor (piff) gene modulates sex determination in Encarsia formosa by regulating doublesex (dsx) expression. When Wolbachia is removed, female-specific dsx decreases while male-specific dsx increases, resulting in haploid male offspring
0.42%
15.4
Wolbachia
RISB1584
Nasonia vitripennis
Order: Hymenoptera
there were few significant changes in immune or reproductive proteins between samples with and without Wolbachia infection. Differentially expressed proteins were involved in the binding process, catalytic activity, and the metabolic process
0.42%
15.2
Pseudomonas sp. BW7P1
RISB1564
Liometopum apiculatum
Order: Hymenoptera
None
0.22%
15.2
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
8.95%
15.0
Enterobacter sp. JBIWA005
RISB2221
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
6.53%
14.9
Klebsiella pneumoniae
RISB1994
Diatraea saccharalis
Order: Lepidoptera
possess cellulose degrading activity
8.95%
14.7
Lactobacillus
RISB0639
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
1.69%
14.4
Lactobacillus
RISB0529
Apis cerana
Order: Hymenoptera
LAB produce organic acids, known as anti-microbial metabolites, inhibiting the growth of spoilage and pathogenic microorganisms
1.69%
14.2
Wolbachia
RISB2601
Asobara tabida
Order: Hymenoptera
Wolbachia is necessary for oogenesis in these A. tabida strains,aposymbiotic female wasps were completely incapable of producing mature oocytes and therefore could not reproduce
0.42%
14.0
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
4.09%
13.9
Lactobacillus
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
1.69%
13.8
Weissella
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.97%
13.7
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
4.19%
13.5
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
2.72%
12.7
Bacillus cereus
RISB2161
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
2.72%
12.7
Massilia
RISB2151
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.74%
12.0
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
4.19%
11.9
Bacillus cereus
RISB2489
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
2.72%
11.7
Variovorax
RISB2153
Osmia bicornis
Order: Hymenoptera
may be essential to support Osmia larvae in their nutrient uptake
0.13%
11.4
Corynebacterium
RISB1285
Aphidius colemani
Order: Hymenoptera
Repelling parasitism
0.71%
11.1
Weissella
RISB1566
Liometopum apiculatum
Order: Hymenoptera
None
0.97%
11.0
Bacillus thuringiensis
RISB2177
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.76%
10.8
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
0.58%
10.6
Burkholderia gladioli
RISB1172
Lagria villosa
Order: Coleoptera
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
0.40%
10.4
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
0.58%
10.3
Serratia marcescens
RISB0120
Nezara viridula
Order: Hemiptera
plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies;transmitted bacteria impacted plant chemical defenses and were able to degrade toxic plant metabolites, aiding the shield bug in its nutrition
0.25%
10.3
Stenotrophomonas maltophilia
RISB1122
Bombyx mori
Order: Lepidoptera
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
1.06%
10.1
Serratia marcescens
RISB0477
Spodoptera litura
Order: Lepidoptera
The ingestion of bacteria negatively affected the development and nutritional physiology of insect. The bacteria after successful establishment started degrading the gut wall and invaded the haemocoel thereby causing the death of the host.
0.25%
10.0
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
4.19%
10.0
Serratia marcescens
RISB0747
Rhodnius prolixus
Order: Hemiptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.25%
9.9
Burkholderia gladioli
RISB1729
Lagria hirta
Order: Coleoptera
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
0.40%
9.7
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
0.58%
9.4
Burkholderia gladioli
RISB1604
Lagria villosa
Order: Coleoptera
Bacteria produce icosalide, an unusual two-tailed lipocyclopeptide antibiotic,which is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring
0.40%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.12%
9.1
Acinetobacter pittii
RISB1977
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.26%
9.1
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
4.09%
9.0
Stenotrophomonas maltophilia
RISB1227
Delia antiqua
Order: Diptera
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
1.06%
8.8
Morganella morganii
RISB0772
Delia antiqua
Order: Diptera
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
0.11%
8.4
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.44%
8.4
Morganella morganii
RISB0008
Phormia regina
Order: Diptera
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
0.11%
8.1
Acinetobacter soli
RISB1118
Spodoptera frugiperda
Order: Lepidoptera
degradation of flubendiamide and chlorantraniliprole
1.95%
8.0
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.11%
8.0
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.33%
7.9
Enterococcus faecalis
RISB1411
Bactrocera dorsalis
Order: Diptera
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
0.33%
7.9
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.33%
7.7
Proteus sp. CD3
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.34%
7.5
Clostridium
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
2.99%
7.2
Pantoea dispersa
RISB0182
Spodoptera frugiperda
Order: Lepidoptera
detoxify benzoxazinoids (secondary metabolites produced by maize) and promote caterpillar growth
0.15%
7.1
Acinetobacter soli
RISB0500
Plutella xylostella
Order: Lepidoptera
None
1.95%
7.0
Pantoea dispersa
RISB1413
Bactrocera dorsalis
Order: Diptera
causing female Bactrocera dorsalis laid more eggs but had shorter lifespan
0.15%
6.6
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
5.90%
6.2
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.44%
6.1
Pantoea dispersa
RISB0381
Thrips tabaci
Order: Thysanoptera
gut symbionts are required for their development
0.15%
6.1
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
1.01%
6.0
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.44%
5.9
Microbacterium sp. zg-Y818
RISB2095
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.30%
5.9
Rickettsia sp. MEAM1 (Bemisia tabaci)
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.33%
5.7
Rickettsia massiliae
RISB1904
Bemisia tabaci
Order: Hemiptera
None
0.51%
5.5
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.18%
5.4
Citrobacter
RISB1503
Bactrocera dorsalis
Order: Diptera
Pesticide-degrading bacteria were frequently detected from pesticide-resistant insects. Susceptible insects became resistant after inoculation of the pesticide-degrading symbiont
1.64%
5.2
Cellulosimicrobium
RISB2182
Armadillidae
Order: Isopoda
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.18%
5.2
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.13%
5.1
Caballeronia zhejiangensis
RISB0688
Anasa tristis
Order: Hemiptera
None
0.13%
5.1
Citrobacter
RISB0192
Hermetia illucens
Order: Diptera
can directly promote the expression of two gene families related to intestinal protein metabolism: Hitryp serine protease trypsin family and Himtp metallopeptidase family
1.64%
5.0
Weissella
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.97%
4.8
Citrobacter
RISB0517
Leptinotarsa decemlineata
Order: Coleoptera
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
1.64%
4.5
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
2.92%
4.2
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
4.09%
4.1
Clostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
2.99%
4.1
Ralstonia
RISB0243
Spodoptera frugiperda
Order: Lepidoptera
None
3.52%
3.5
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
3.05%
3.1
Clostridium
RISB1959
Pyrrhocoridae
Order: Hemiptera
None
2.99%
3.0
Apibacter
RISB1138
Musca domestica
Order: Diptera
None
2.72%
2.7
Chromobacterium
RISB1453
Aedes aegypti
Order: Diptera
aminopeptidase secreted by a Chromobacterium species suppresses DENV infection by directly degrading the DENV envelope protein
0.20%
2.7
Corynebacterium
RISB0363
Pagiophloeus tsushimanus
Order: Coleoptera
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
0.71%
2.5
Corynebacterium
RISB0531
Helicoverpa armigera
Order: Lepidoptera
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
0.71%
2.4
Bradyrhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.80%
2.4
Kosakonia
RISB0810
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-16 oxidation pathway
0.19%
1.6
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.30%
1.4
Paraburkholderia
RISB0125
Physopelta gutta
Order: Hemiptera
None
1.01%
1.0
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.27%
0.6
Flavobacterium
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.58%
0.6
Kosakonia
RISB1155
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.19%
0.6
Chromobacterium
RISB1873
Aedes aegypti
Order: Diptera
gut microbiome
0.20%
0.5
Variovorax
RISB1712
Phlebotomus papatasi
Order: Diptera
None
0.13%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.13%
0.1

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR5644282
684.8 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table